Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevation map, compute the volume of water it is able to trap after raining.

Note:
Both m and n are less than 110. The height of each unit cell is greater than 0 and is less than 20,000.

Example:

Given the following 3x6 height map:
[
[1,4,3,1,3,2],
[3,2,1,3,2,4],
[2,3,3,2,3,1]
] Return 4.


The above image represents the elevation map [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]] before the rain.


After the rain, water is trapped between the blocks. The total volume of water trapped is 4.

42. Trapping Rain Water的拓展,由2D变3D了。解法跟之前的完全不同了,之前那道题由于是二维的,我们可以用双指针来做,而这道三维的,我们需要用BFS来做。

Java: Priority Queue

public class Solution {

    public class Cell {
int row;
int col;
int height;
public Cell(int row, int col, int height) {
this.row = row;
this.col = col;
this.height = height;
}
} public int trapRainWater(int[][] heights) {
if (heights == null || heights.length == 0 || heights[0].length == 0)
return 0; PriorityQueue<Cell> queue = new PriorityQueue<>(1, new Comparator<Cell>(){
public int compare(Cell a, Cell b) {
return a.height - b.height;
}
}); int m = heights.length;
int n = heights[0].length;
boolean[][] visited = new boolean[m][n]; // Initially, add all the Cells which are on borders to the queue.
for (int i = 0; i < m; i++) {
visited[i][0] = true;
visited[i][n - 1] = true;
queue.offer(new Cell(i, 0, heights[i][0]));
queue.offer(new Cell(i, n - 1, heights[i][n - 1]));
} for (int i = 0; i < n; i++) {
visited[0][i] = true;
visited[m - 1][i] = true;
queue.offer(new Cell(0, i, heights[0][i]));
queue.offer(new Cell(m - 1, i, heights[m - 1][i]));
} // from the borders, pick the shortest cell visited and check its neighbors:
// if the neighbor is shorter, collect the water it can trap and update its height as its height plus the water trapped
// add all its neighbors to the queue.
int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int res = 0;
while (!queue.isEmpty()) {
Cell cell = queue.poll();
for (int[] dir : dirs) {
int row = cell.row + dir[0];
int col = cell.col + dir[1];
if (row >= 0 && row < m && col >= 0 && col < n && !visited[row][col]) {
visited[row][col] = true;
res += Math.max(0, cell.height - heights[row][col]);
queue.offer(new Cell(row, col, Math.max(heights[row][col], cell.height)));
}
}
} return res;
}
}  

Python:

from heapq import heappush, heappop

class Solution(object):
def trapRainWater(self, heightMap):
"""
:type heightMap: List[List[int]]
:rtype: int
"""
m = len(heightMap)
if not m:
return 0
n = len(heightMap[0])
if not n:
return 0 is_visited = [[False for i in xrange(n)] for j in xrange(m)] heap = []
for i in xrange(m):
heappush(heap, [heightMap[i][0], i, 0])
is_visited[i][0] = True
heappush(heap, [heightMap[i][n-1], i, n-1])
is_visited[i][n-1] = True
for j in xrange(n):
heappush(heap, [heightMap[0][j], 0, j])
is_visited[0][j] = True
heappush(heap, [heightMap[m-1][j], m-1, j])
is_visited[m-1][j] = True trap = 0
while heap:
height, i, j = heappop(heap)
for (dx, dy) in [(1,0), (-1,0), (0,1), (0,-1)]:
x, y = i+dx, j+dy
if 0 <= x < m and 0 <= y < n and not is_visited[x][y]:
trap += max(0, height - heightMap[x][y])
heappush(heap, [max(height, heightMap[x][y]), x, y])
is_visited[x][y] = True return trap  

C++:

class Solution {
public:
int trapRainWater(vector<vector<int>>& heightMap) {
if (heightMap.empty()) return 0;
int m = heightMap.size(), n = heightMap[0].size(), res = 0, mx = INT_MIN;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
vector<vector<bool>> visited(m, vector<bool>(n, false));
vector<vector<int>> dir{{0,-1},{-1,0},{0,1},{1,0}};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
q.push({heightMap[i][j], i * n + j});
visited[i][j] = true;
}
}
}
while (!q.empty()) {
auto t = q.top(); q.pop();
int h = t.first, r = t.second / n, c = t.second % n;
mx = max(mx, h);
for (int i = 0; i < dir.size(); ++i) {
int x = r + dir[i][0], y = c + dir[i][1];
if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y]) continue;
visited[x][y] = true;
if (heightMap[x][y] < mx) res += mx - heightMap[x][y];
q.push({heightMap[x][y], x * n + y});
}
}
return res;
}
};

 

类似题目:

[LeetCode] 42. Trapping Rain Water 收集雨水

All LeetCode Questions List 题目汇总

 

[LeetCode] 407. Trapping Rain Water II 收集雨水 II的更多相关文章

  1. [LeetCode] 407. Trapping Rain Water II 收集雨水之二

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  2. leetCode 42.Trapping Rain Water(凹槽的雨水) 解题思路和方法

    Trapping Rain Water Given n non-negative integers representing an elevation map where the width of e ...

  3. [leetcode] 407. Trapping Rain Water II

    https://leetcode.com/contest/6/problems/trapping-rain-water-ii/ 看到这题,我很高兴,因为我做过!哈哈!其实我现在也写不出来,知道大概思想 ...

  4. leetcode 11. Container With Most Water 、42. Trapping Rain Water 、238. Product of Array Except Self 、407. Trapping Rain Water II

    11. Container With Most Water https://www.cnblogs.com/grandyang/p/4455109.html 用双指针向中间滑动,较小的高度就作为当前情 ...

  5. leetcode#42 Trapping rain water的五种解法详解

    leetcode#42 Trapping rain water 这道题十分有意思,可以用很多方法做出来,每种方法的思想都值得让人细细体会. 42. Trapping Rain WaterGiven n ...

  6. [array] leetcode - 42. Trapping Rain Water - Hard

    leetcode - 42. Trapping Rain Water - Hard descrition Given n non-negative integers representing an e ...

  7. LeetCode 42. Trapping Rain Water 【两种解法】(python排序遍历,C++ STL map存索引,时间复杂度O(nlogn))

    LeetCode 42. Trapping Rain Water Python解法 解题思路: 本思路需找到最高点左右遍历,时间复杂度O(nlogn),以下为向左遍历的过程. 将每一个点的高度和索引存 ...

  8. [LeetCode] 42. Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  9. LeetCode - 42. Trapping Rain Water

    42. Trapping Rain Water Problem's Link ------------------------------------------------------------- ...

随机推荐

  1. Codeforces B. Minimum Possible LCM(贪心数论)

    题目描述: B. Minimum Possible LCM time limit per test 4 seconds memory limit per test 1024 megabytes inp ...

  2. javascript Object and new object() object --构造函数

  3. 4-html图片与链接

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. Java 多线程实战

    Java多线程 public class ThreadTest { public static void main(String[] args) throws InterruptedException ...

  5. robot framework设置更高级别的关键字

    robot framework中除了内置的关键字,以及低级别的用户自定义关键字外,为了使用例更加整洁,我们还可以形成更高级别的关键字 方法如下: 在Keywords里面设置 其中Run Success ...

  6. 17-ESP8266 SDK开发基础入门篇--TCP服务器 RTOS版,小试牛刀

    https://www.cnblogs.com/yangfengwu/p/11105466.html 现在开始写... lwip即可以用socket 的API  也可以用 netconn  的API实 ...

  7. Mac下删除自己安装的Python

    删除Python框架sudo rm -rf /Library/Frameworks/Python.framework/Versions/x.x 删除Python程序sudo rm -rf “/Appl ...

  8. 53、Spark Streaming:输入DStream之Kafka数据源实战

    一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Sp ...

  9. 微信小程序前端promise封装

    config.js const config = { base_url_api : "https://douban.uieee.com/v2/movie/", } export { ...

  10. Ajax 的一些概念 解析

    什么是Ajax Ajax基本概念 Ajax(Asynchronous JavaScript and XML):翻译成中文就是异步的JavaScript和XML. 从功能上来看是一种在无需重新加载整个网 ...