摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习。

 

一:贝叶斯分类器简介

1)贝叶斯分类器是一种基于统计的分类器,它根据给定样本属于某一个具体类的概率来对其进行分类。

2)贝叶斯分类器的理论基础是贝叶斯理论

3)贝叶斯分类器的一种简单形式是朴素贝叶斯分类器,跟随机森林、神经网络等分类器都有可比的性能。

4)贝叶斯分类器是一种增量型的分类器。

 

二:贝叶斯理论

第一次接触贝叶斯还是本科学概率论的时候,那时候也就只知道做题目,没想到现在还能够在工作和学习中用到它,先复习下相关的基础概率公式吧:

1) 乘法定理:设P(B)>0,则有P(AB) = P(A|B)P(B).

2) 全概率公式:设试验E的样本空间为S,A为E的事件,若事件组B1,B2,…,Bn为S的一个划分,且P(Bi)> 0(i=1,2,…,n),则有

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + …+ P(A|Bn)P(Bn).

    :在很多事件问题中P(A)不容易算出来,但是可以很容易的找到S的一个划分:B1,B2,…,Bn,并且P(Bi)和P(A|Bi)为已知或者容易算出,那么就可以根据上式求出P(A).

3)贝叶斯公式:设试验E的样本空间为S,A为E的事件,B1,B2…,Bn为S的一个划分,且P(A)>0,P(Bi)>0(i=1,2,…,n),则有

P(Bi|A) = P(ABi)/P(A) = P(A|Bi)P(Bi)/∑P(A|Bi)P(Bi),i=1,2,…n.

举例

X是一个待分类的数据元组,由n个属性描述;H是一个假设,例如X属于类C。对于分类问题,我们想计算出概率P(H|X):即已知元组X的每个元素对应的属性值,求出X属于C类的概率。

例如:X的属性值为:age=25,income=$5000,H对应的假设是:X会买电脑。

P(H|X):意思是在已知某客户信息age=25,income=$5000的条件下,该客户会买电脑的概率。

P(H):意思是对于任何给定的客户信息,该客户会购买电脑的概率。

P(X|H):意思是已知客户会买电脑,那么该客户的age=25,income=$5000的概率。

P(X):意思是在我们所有的客户信息集合中,客户的age=25,income=$5000的概率。

所以:P(H|X) = P(X|H)P(H)/P(X)

三:朴素贝叶斯分类器

朴素贝叶斯分类器的工作流程如下:

1:设D为样本训练集;每一个样本X是由n个属性值组成的,X=(x1,x2,…xn);对应的属性集为A1,A2,A3…An;

2: 假设有m个类标签:C1,C2,…Cm.对于某待分类元X,朴素分类器会把P(Ci|X)(i=1,2,…m)值最大的那个类标签Ci认为是X的类别,即朴素贝叶斯分类器预测出X属于类Ci,当且仅当P(Ci|X)>P(Cj|X) (1≤j≤m,j≠i).因此我们的目标就是找出P(Ci|X)中的最大值。

P(Ci|X) = P(X|Ci)P(Ci)/P(X)

对于给定的样本集,P(X)是常数,跟某个具体的类标签没有关联,所以要想找出P(Ci|X)的最大值也就是找出P(X|Ci)P(Ci)的最大值:

如果我们不知道P(Ci)的值,我们可以假设P(C1)=P(C2)=…=P(Cm),当然P(Ci)可以通过估计值来代替,P(Ci)=|Ci, D| /|D|

其中|D|为样本总数,|Ci,D|为D中属于类Ci的样本数。

3:如果n的值特别大,也就是说样本元有很多属性,那么对于P(X|Ci)的计算会相当复杂。所以在朴素贝叶斯中进行了一个假设:即对于样本元中的每个属性,它们都互相条件独立

所以有:

对于P(xi|Ci)我们可以从训练集中算出来,其中xi代表在某个具体样本中对应属性Ai的值。

P(xi|Ci)的计算分为两种情况:

1):如果属性Ai的值是分类变量(离散变量),那么P(xi|Ci)等于训练样本空间|D|中,属于类Ci并且对应属性Ai的值等于xi的数目除以样本空间中属于类Ci的样本数目。

2):如果Ai的值是连续型的变量,则P(xi|Ci)的计算会根据高斯分布来计算,设其中均值为μ,标准方差为σ:

4:为了预测X所属的类标签,我们根据前面的步骤可以算出每一个类标签Ci对应的P(X|Ci)P(Ci)值,当某一个类标签Ci有:

P(X|Ci)P(Ci)>P(X|Cj)P(Cj) 对于任意j:   1≤j≤m,j≠i

则我们认为X属于类标签Ci.

 

四:具体例子分析

这里我们还是用 分类算法之决策树 中的样本数据来进行举例:

样本空间D如下表所示:其中 |D|=14.

属性集合为A{age,come,student,credit_rating} 对应的属性个数n=4.

分类属性为:buys_computer,值为{yes,no}  即C1:buys_computer = yes;C2: buys_computer = no; 分类标签个数 m = 2;

有一待分类的数据元X={age<=30,income=medium,student=yes,credit_rating=fail}.

则根据朴素贝叶斯分类器的工作流程我们可以计算出:

P(Ci):

P(buys_computer = “yes”) = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

P(xi|Ci):

P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2

P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

P(X|Ci):

P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci)*P(Ci) :

P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

因为0.28>0.007所以X属于类:buys_computer = “yes”.

五:朴素贝叶斯存在的问题

1:零概率问题

在上述的例子中假设在样本数据集中income = medium的样本数为0,那么P(income = “medium” | buys_computer = “yes”) 和

P(income = “medium” | buys_computer = “no”) 都将为0,那么在计算P(X|Ci)*P(Ci)时结果也为0,这样就不好决定X是属于哪一个类。

对于这样的问题的一个解决方案叫做:Laplacian correction或者Laplacian estimator,是以一位法国数学家Pierre Laplace名字命名的。

它的具体做法就是给相应的属性的不同值数目都加1:

假设:有1000个训练样本,其中income=low的数目为10,income=medium的数目为0,income=high的数目为990,则为了避免零概率问题,我们给每一种income的数目加1,及最后结果为 income =medium的数目为1,low的数目为11,high的数目为991.这样也就避免了零概率问题。

2:准确度问题

朴素贝叶斯分类器是基于样本属性条件独立的假设的前提下的,但是实际情况可能并不成立,这样也就缺失准确性了.

解决朴素贝叶斯准确性问题提出的一种方法叫做:贝叶斯网络(Bayesian Belief Networks ).这个方法留着下次学习。

分类算法之贝叶斯(Bayes)分类器的更多相关文章

  1. (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝 ...

  2. python机器学习(三)分类算法-朴素贝叶斯

    一.概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率. 联合概率:包含多个条件,且所有条件同时成立的概率,记作:

  3. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  4. 【机器学习】文本分类——朴素贝叶斯Bayes

    朴素贝叶斯主要用于文本分类.文本分类常见三大算法:KNN.朴素贝叶斯.支持向量机SVM. 一.贝叶斯定理 贝叶斯公式思想:利用已知值来估计未知概率.已知某条件概率,如何得到两个事件交换后的概率,也就是 ...

  5. 机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归

    朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻 ...

  6. 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯

    一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设    条件独立性假设:假设在给定label y的条件下,特征之间是独立的    最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...

  7. R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的 ...

  8. PGM:有向图模型:贝叶斯网络

    http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值 ...

  9. [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)

    Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...

随机推荐

  1. ERROR 1227 (42000): Access denied; you need (at least one of) the PROCESS privilege(s) for this oper

    1  用以往的mysql登陆模式登陆 [mysql@eanintmydbc002db1 mysqllog]$ mysql Enter password:  Welcome to the MySQL m ...

  2. HDU1013_Digital Roots【大数】【水题】

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. ViewGroup源码部分解析

    ViewGroup的官方解析是: A <code>ViewGroup</code> is a special view that can contain other views ...

  4. MapReduce数据连接

    对于不同文件里的数据,有时候有相应关系,须要进行连接(join),获得一个新的文件以便进行分析.比方有两个输入文件a.txt,b.txt,当中的数据格式分别例如以下 1 a 2 b 3 c 4 d 1 ...

  5. mybatis0211 mybatis和spring整合

    1mybatis和spring整合 1.1 mybaits和spring整合的思路 .让spring管理SqlSessionFactory .让spring管理mapper动态代理对象和dao. 使用 ...

  6. 嵌入式Linux开发系列之一: 走进嵌入式Linux的世界

    转载:http://www.ibm.com/developerworks/cn/linux/l-embed/part1/index.html   随着信息化技术的发展和数字化产品的普及,以计算机技术. ...

  7. 为什么arcgis里,鼠标的图标都变成放大镜不能用了

    做作业做到一半,鼠标的图标就只有放大镜了,不管是点箭头还是作图工具都没用,手抓的也没用,只剩下放大镜的功能和图标了,这是怎么一回事啊?种情况我碰到过几次,具体原因不清楚,但是解决方法是有的:把你的数据 ...

  8. JPA与ORM以及Hibernate

  9. 关于eclipse中egit右键reset失败,无法更新git仓库.

    有时候egit出现莫名其妙的问题,这次是无法对git仓库进行reset . & & 解决方法: 找到对应git仓库的磁盘目录,然后进行git brash.(一定要安装了git客户端) ...

  10. 【简单dp+模拟】hdu-5375(2015多校#7-1007)

    给你一个二进制数,,每一位有一个权值,让你转格雷码,求所对应格雷码位为1的权值的和:二进制位中的某些位为?,你需要给这些问号赋值使得到的和最大. 首先你得知道二进制转格雷码的规则,即格雷码位为[二进制 ...