hdu 4676 Sum Of Gcd
离线+分块!!
思路:序列a[1],a[2],a[3]……a[n]
num[i]表示区间[L,R]中是i的倍数的个数;euler[i]表示i的欧拉函数值。
则区间的GCD之和sum=∑(C(num[i],2)*euler[i]).当增加一个数时,若有约数j,则只需加上num[j]*euler[j],之后再num[j]++;
反之亦然!!
代码如下:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define pi acos(-1.0)
#define MAX 20002
using namespace std;
int R,L,an[MAX],euler[MAX],ans[MAX],res,num[MAX];
bool vis[MAX],prime[MAX];
struct node
{
int x,y,l,p;
}q[MAX];
vector<int>p[MAX];
void init()//初始化欧拉函数值
{
int i,j;
for(i=;i<MAX;i++) euler[i]=i;
for(i=;i<MAX;i++)
if(euler[i]==i){
for(j=i;j<MAX;j+=i)
euler[j]=euler[j]/i*(i-);
}
}
void factor(int n)//分解因子
{
p[n].clear();
for(int i=;i*i<=n;i++){
if(n%i==){
p[n].push_back(i);
if(i*i!=n) p[n].push_back(n/i);
}
}
}
bool cmp(const node &a,const node &b)
{
if(a.l==b.l) return a.y<b.y;
return a.l<b.l;
}
void query(int x,int y,int flag)//查询操作
{
int t;
if(flag){
for(int i=x;i<L;i++){
for(int j=;j<p[an[i]].size();j++){
t=p[an[i]][j];
res+=num[t]*euler[t];
num[t]++;
}
}
for(int i=L;i<x;i++){
for(int j=;j<p[an[i]].size();j++){
t=p[an[i]][j];
num[t]--;
res-=num[t]*euler[t];
}
}
for(int i=y+;i<=R;i++){
for(int j=;j<p[an[i]].size();j++){
t=p[an[i]][j];
num[t]--;
res-=num[t]*euler[t];
}
}
for(int i=R+;i<=y;i++){
for(int j=;j<p[an[i]].size();j++){
t=p[an[i]][j];
res+=num[t]*euler[t];
num[t]++;
}
}
}
else{
for(int i=x;i<=y;i++){
for(int j=;j<p[an[i]].size();j++){
t=p[an[i]][j];
res+=num[t]*euler[t];
num[t]++;
}
}
}
L=x;R=y;
}
int main(){
int n,t,i,j,m,c,ca=;
init();
for(i=;i<=;i++) factor(i);
scanf("%d",&c);
while(c--){
scanf("%d",&n);
for(i=;i<=n;i++) scanf("%d",&an[i]);
m=sqrt(1.0*n);
scanf("%d",&t);
for(i=;i<t;i++){
scanf("%d%d",&q[i].x,&q[i].y);
q[i].l=q[i].x/m;
q[i].p=i;
}
sort(q,q+t,cmp);
res=;
memset(num,,sizeof(num));
for(i=;i<t;i++){
query(q[i].x,q[i].y,i);
ans[q[i].p]=res;
}
printf("Case #%d:\n",++ca);
for(i=;i<t;i++)
printf("%d\n",ans[i]);
}
return ;
}
hdu 4676 Sum Of Gcd的更多相关文章
- HDU 4676 Sum Of Gcd 【莫队 + 欧拉】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=4676 Sum Of Gcd Time Limit: 10000/5000 MS (Java/Others ...
- hdu 4676 Sum Of Gcd 莫队+phi反演
Sum Of Gcd 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4676 Description Given you a sequence of ...
- hdu 4676 Sum Of Gcd 莫队+数论
题目链接 给n个数, m个询问, 每个询问给出[l, r], 问你对于任意i, j.gcd(a[i], a[j]) L <= i < j <= R的和. 假设两个数的公约数有b1, ...
- HDU - 4676 :Sum Of Gcd (莫队&区间gcd公式)
Given you a sequence of number a 1, a 2, ..., a n, which is a permutation of 1...n. You need to answ ...
- Sum Of Gcd(hdu 4676)
Sum Of Gcd Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total ...
- hdu 5381 The sum of gcd 莫队+预处理
The sum of gcd Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) P ...
- hdu 5381 The sum of gcd(线段树+gcd)
题目链接:hdu 5381 The sum of gcd 将查询离线处理,依照r排序,然后从左向右处理每一个A[i],碰到查询时处理.用线段树维护.每一个节点表示从[l,i]中以l为起始的区间gcd总 ...
- 【HDU 5381】 The sum of gcd (子区间的xx和,离线)
[题目] The sum of gcd Problem Description You have an array A,the length of A is nLet f(l,r)=∑ri=l∑rj= ...
- hdu 5381 The sum of gcd 2015多校联合训练赛#8莫队算法
The sum of gcd Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) T ...
随机推荐
- 【OpenCV第一篇】安装OpenCV
[OpenCV第一篇]安装OpenCV 本篇主要介绍如何下载OpenCV安装程序,如何在VS2008下安装配置OpenCV,文章最后还介绍了一个使用OpenCV的简单小例子. <OpenCV入门 ...
- jQuery: 图片不完全按比例自动缩小
有时我们会有这样的需求:让图片显示在固定大小的区域.如果不考虑 IE6 完全可以使用 css 的 max-width 限制宽度自动按比例缩小显示,但是这样有个问题,就是如果按比例缩小后,图片高度不够, ...
- TCP之Socket的编程
Socket是网络编程的一个抽象的概念,通常我们用Socket来表示服务器与客户端间的网络连接, 即用Socket表示"打开了一个网络连接", 而打开一个网络连接需要知道目标电脑的 ...
- 【转】MyEclipse快捷键大全(绝对全)
ref:http://www.douban.com/note/254195820/?type=like# ctrl+w 关闭单个窗口 F3 跳转到类.变量的声明 F11 运行上次程序 Ctrl + F ...
- WordPress 主题开发 - (三) 开发工具 待翻译
Before we get started building any WordPress Theme, we’re going to need to get our development tools ...
- URI、URL以及URN的区别
首先,URI,是uniform resource identifier,统一资源标识符,用来唯一的标识一个资源.而URL是uniform resource locator,统一资源定位器,它是一种具体 ...
- Python解析HTML的开发库pyquery
PyQuery是一个类似于jQuery的Python库,也可以说是jQuery在Python上的实现,能够以 jQuery 的语法来操作解析 HTML 文档,易用性和解析速度都很好. 例如,一段豆瓣h ...
- python初试牛刀
需求:在L7的一台机器上做nginx配置,然后代码分发到别的所有的机器上.由于目录中有很多配置文件,而且防止误操作,需要修改配置之前先备份原配置.然后需要在运行修改配置的脚本之前,先弹出界面,告知操作 ...
- Thinkphp常用的方法和技巧(转)
2012年09月26日 Thinkphp 里一些常用方法和技巧的整理,包括常用的快捷键以及在程序开发时用到的一些实用方法,关于快捷键用得不是很熟练,总之,掌握这些方法和技巧,对于我们开发 thinkp ...
- Oracle使用%type类型的变量输出结果
使用%type关键字可以声明一个与指定列名称相同的数据类型,他通常紧跟在指定列名的后面. 使用%type的2个好处: 1.用户不必查看表中各个列的数据类型,就可以确保所定义的变量能够存储检索的数据. ...