bzoj3996
把这个式子弄清楚就知道这是最小割了
相当于,选某个点i有收入ai,i,会损失ci,
如果i,j都被选则有额外收入ai,j+aj,i
明显,对每个点i,连(s,i,∑ai,j) (i,t,ci)
对每对i,j连边(i,j,ai,j),没了
const inf=;
type node=record
po,next,flow:longint;
end; var e:array[..] of node;
p,numh,h,cur,pre,d:array[..] of longint;
t,len,ans,i,j,n,m,x,s:longint; procedure add(x,y,f:longint);
begin
inc(len);
e[len].po:=y;
e[len].flow:=f;
e[len].next:=p[x];
p[x]:=len;
end; procedure build(x,y,f:longint);
begin
add(x,y,f);
add(y,x,);
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; function sap:longint;
var u,i,j,tmp,neck,q:longint;
begin
numh[]:=t+;
for i:= to t do
cur[i]:=p[i];
u:=; sap:=; neck:=inf;
while h[]<t+ do
begin
d[u]:=neck;
i:=cur[u];
while i<>- do
begin
j:=e[i].po;
if (e[i].flow>) and (h[u]=h[j]+) then
begin
neck:=min(neck,e[i].flow);
pre[j]:=u;
cur[u]:=i;
u:=j;
if u=t then
begin
sap:=sap+neck;
while u<> do
begin
u:=pre[u];
j:=cur[u];
dec(e[j].flow,neck);
inc(e[j xor ].flow,neck);
end;
neck:=inf;
end;
break;
end;
i:=e[i].next;
end;
if i=- then
begin
dec(numh[h[u]]);
if numh[h[u]]= then break;
q:=-;
tmp:=t;
i:=p[u];
while i<>- do
begin
j:=e[i].po;
if e[i].flow> then
if tmp>h[j] then
begin
q:=i;
tmp:=h[j];
end;
i:=e[i].next;
end;
h[u]:=tmp+;
inc(numh[h[u]]);
cur[u]:=q;
if u<> then
begin
u:=pre[u];
neck:=d[u];
end;
end;
end;
end; begin
len:=-;
fillchar(p,sizeof(p),);
readln(n);
t:=n+;
for i:= to n do
begin
s:=;
for j:= to n do
begin
read(x);
s:=s+x;
build(i,j,x);
end;
build(,i,s);
ans:=ans+s;
end;
for i:= to n do
begin
read(x);
build(i,t,x);
end;
writeln(ans-sap);
end.
bzoj3996的更多相关文章
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图
[BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- BZOJ3996 [TJOI2015]线性代数
就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
- BZOJ3996 TJOI2015线性代数
先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...
- BZOJ3996 [TJOI2015]线性代数 【最小割】
题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...
- BZOJ3996 线性代数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3996 转化题目给的条件 $$D = \sum_{i=1}^n \sum_{j=1}^n{A(i ...
随机推荐
- linux crontab 命令
Linux 系统提供了使用者控制计划任务的命令 :crontab 命令. 一.crond简介 crond是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划 ...
- Android中获取应用程序(包)的信息-----PackageManager的使用(一)
本节内容是如何获取Android系统中应用程序的信息,主要包括packagename.label.icon.占用大小等.具体分为两个 部分,计划如下: 第一部分: 获取应用程序的packagenam ...
- 使用plspl创建orcale作业
1.由于权限问题,第一步应先以sys账户登录,路径:工具->DBMS 调试程序->作业 ,新建一个作业,出现如下图的窗口 2.开始依次填写相应内容,Name为作业名字,注意要加上用户名前 ...
- EXTJS 4.2 资料 控件之 Store 用法
最近工作,发现在Extjs中自定义Store的功能挺多,特意在此做笔记,几下来,具体代码如下: 1.定义Store //定义Store var ItemSelectorStore = new Ext. ...
- Java中“||”与“|”的区别
两者都是或,但是不一样.举个例实例给你看你就明白了: int i=0;if(3>2 || (i++)>1) i=i+1;System.out.println(i); 这段程序会打印出1,而 ...
- 实用程序Commer的开发——U盘内容可选同步至FTP服务器
需求分析:需要在软件运行后将插入的U盘里面的文件Copy至本机上,然后可选的上传一部分至FTP服务器上. 系统设计:基于MFC的基本对话框程序:主要模块有检测U盘插入并复制文件以及上传到网络.通过对U ...
- C++函数中那些不可以被声明为虚函数的函数
转自C++函数中那些不可以被声明为虚函数的函数 常见的不不能声明为虚函数的有:普通函数(非成员函数):静态成员函数:内联成员函数:构造函数:友元函数. 1.为什么C++不支持普通函数为虚函数? 普通函 ...
- Hex string convert to integer with stringstream
#include <sstream>#include <iostream>int main() { unsigned int x; std::stringstream ss; ...
- DJANGO技巧两则:模拟MKDIR -P及配合NGINX上传大文件不使超时
这都是在开发当哪遇到的问题,网上转转,作个记录: http://blog.chinaunix.net/uid-25525723-id-1596574.html http://bookshadow.co ...
- MyBatis-Spring 执行SQL语句的流程
1. 从SqlSessionDaoSupport开始 通常我们使用MyBatis会让自己的DAO继承SqlSessionDaoSupport,那么SqlSessionDaoSupport是如何运作的呢 ...