bzoj 1042 HAOI2008 硬币购物
这道题思路是在是神。
先dp出没有限制时候的方案数。
dp的时候注意 先循环 1..4 再循环 1..maxs 防止重复。边界是f[0] = 1。 这么基础的背包都忘记了=_=
接下来处理有重复的问题,容斥原理
容斥原理说起来很简单,但有一些很神奇的应用,比如这道题。
最终的答案 = 没有限制的方案 - 其中一种超了限制的方案 + 其中两种超了限制的方案 - 三种超了限制的方案 + 四种超了限制的方案
ans = f[s] + f[s - c[i]*(d[i]+1)] - …… + f[s - c[1]*(d[1]+1)……]
为什么是 d[i]+1 呢?
至少用d[i]+1个,剩下的随意,又是不限制的方案数了。
上代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
using namespace std; int c[], n, d[], s;
long long f[N] = {}; void make_f()
{
f[] = ;
for (int j = ; j <= ; ++j)
for (int i = c[j]; i <= N-; ++i)
f[i] += f[i-c[j]];
} long long getans()
{
long long ans = f[s];
for (int i = ; i <= ; ++i)
if (s - c[i]*(d[i]+) >= )
ans -= f[s - c[i]*(d[i]+)];
for (int i = ; i <= ; ++i)
for (int j = i+; j <= ; ++j)
if (s - c[i]*(d[i]+) - c[j]*(d[j]+) >= )
ans += f[s - c[i]*(d[i]+) - c[j]*(d[j]+)];
for (int i = ; i <= ; ++i)
for (int j = i+; j <= ; ++j)
for (int k = j+; k <= ; ++k)
if (s - c[i]*(d[i]+) - c[j]*(d[j]+) - c[k]*(d[k]+) >= )
ans -= f[s - c[i]*(d[i]+) - c[j]*(d[j]+) - c[k]*(d[k]+)];
if (s - c[]*(d[]+) - c[]*(d[]+) - c[]*(d[]+) - c[]*(d[]+) >= )
ans += f[s - c[]*(d[]+) - c[]*(d[]+) - c[]*(d[]+) - c[]*(d[]+)];
return ans; } int main()
{
for (int i = ; i <= ; ++i) scanf("%d", &c[i]);
make_f(); scanf("%d", &n);
while (n--)
{
for (int i = ; i <= ; ++i) scanf("%d", &d[i]);
scanf("%d", &s);
printf("%I64d\n", getans());
}
return ;
}
bzoj 1042 HAOI2008 硬币购物的更多相关文章
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)
题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...
- ●BZOJ 1042 [HAOI2008]硬币购物
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题解: 容斥原理,dp预处理首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有 ...
随机推荐
- IPC——数据报套接字通信
Linux进程间通信——使用数据报套接字 前一篇文章,Linux进程间通信——使用流套接字介绍了一些有关socket(套接字)的一些基本内容,并讲解了流套接字的使用,这篇文章将会给大家讲讲,数据报套接 ...
- 项目源码--Android美图秀秀源码
下载源码 技术要点: 1. 多种分类分享高清图片 2. 图片缓存技术 3. 图片缩图显示 4. 图片实时加载技术 5. 多点触控技术 6. HTTP网络数据搜索技术 7. 精美UI图片显示 ...
- JavaScript跨域实现
最近在做个上传文件的服务,其中包含一个上传的web页面.目的是想客户端页面嵌套这个web页面,然后直接将文件上传到服务器. 因为文件不同所以需要保存到的文件夹名称也不一样,所以客户端需要传递一个文件夹 ...
- Java最重要的21个技术点和知识点
(五)Java最重要的21个技术点和知识点之网络编程.泛型.编程规范相关 写这篇文章的目的是想总结一下自己这么多年JAVA培训的一些心得体会,主要是和一些java基础知识点相关的,所以也希望能分享给刚 ...
- 【如何快速的开发一个完整的 iOS 直播 app】(美颜篇)
来源:袁峥Seemygo 链接:http://www.jianshu.com/p/4646894245ba 前言 在看这篇之前,如果您还不了解直播原理,请查看这篇文章如何快速的开发一个完整的iOS直播 ...
- c#获得目标服务器中所有数据库名、表名、列名的实现代码
/// <summary> /// 获得目标服务器所有数据库名 /// </summary> /// <param name="serverName" ...
- 100%会用到的angularjs的知识点【新手可mark】
前言:下面我将整理出100%会到的angularjs的知识点,掌握这些知识点你基本上就可以独立完成一个angularjs的项目,前提是你有一定web开发的经验:1.了解基本的javascript的概念 ...
- Burn the Linked Camp(bellman 差分约束系统)
Burn the Linked Camp Time Limit: 2 Seconds Memory Limit: 65536 KB It is well known that, in the ...
- solr 高亮配置
solrj中配置: 两种高亮开启设置 // solrParams.setHighlight(true); solrParams.setParam("hl", "true& ...
- iOS 左右滑动 手势 响应方法
1. @property (nonatomic, strong) UISwipeGestureRecognizer *leftSwipeGestureRecognizer; @property (no ...