Codeforces Beta Round #10 D. LCIS
题目链接:
http://www.codeforces.com/contest/10/problem/D
D. LCIS
time limit per test:1 secondmemory limit per test:256 megabytes
问题描述
This problem differs from one which was on the online contest.
The sequence a1, a2, ..., an is called increasing, if ai < ai + 1 for i < n.
The sequence s1, s2, ..., sk is called the subsequence of the sequence a1, a2, ..., an, if there exist such a set of indexes 1 ≤ i1 < i2 < ... < ik ≤ n that aij = sj. In other words, the sequence s can be derived from the sequence a by crossing out some elements.
You are given two sequences of integer numbers. You are to find their longest common increasing subsequence, i.e. an increasing sequence of maximum length that is the subsequence of both sequences.
输入
The first line contains an integer n (1 ≤ n ≤ 500) — the length of the first sequence. The second line contains n space-separated integers from the range [0, 109] — elements of the first sequence. The third line contains an integer m (1 ≤ m ≤ 500) — the length of the second sequence. The fourth line contains m space-separated integers from the range [0, 109] — elements of the second sequence.
输出
In the first line output k — the length of the longest common increasing subsequence. In the second line output the subsequence itself. Separate the elements with a space. If there are several solutions, output any.
样例
input
7
2 3 1 6 5 4 6
4
1 3 5 6output
3
3 5 6
题意
求最长公共递增子序列,并输出一个最优解。
题解
dp[j]表示第一个串的前i个和第二个串的前j个的以b[j]结尾的公共最长上升子序列的长度。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 555;
int dp[maxn];
int a[maxn], b[maxn];
int pre[maxn];
int n, m;
void print(int i) {
if (!i) return;
print(pre[i]);
printf("%d ", b[i]);
}
void init() {
memset(dp, 0, sizeof(dp));
memset(pre, 0, sizeof(pre));
}
int main() {
init();
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
scanf("%d", &m);
for (int i = 1; i <= m; i++) scanf("%d", &b[i]);
int ans = 0, st = 0;
for (int i = 1; i <= n; i++) {
int pos = 0;
for (int j = 1; j <= m; j++) {
if (b[j]<a[i] && dp[pos]<dp[j]) {
pos = j;
}
else if (a[i] == b[j]) {
dp[j] = dp[pos] + 1;
pre[j] = pos;
}
//这样边扫边记会wa,还没找到原因。。
//if (ans<dp[j]) {
// ans = dp[j], st = j;
//}
}
}
for (int i = 1; i <= m; i++) {
if (dp[i] > ans) {
ans = dp[i], st = i;
}
}
printf("%d\n", ans);
print(st);
return 0;
}
再一发:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=555;
const int maxm=555;
int a[maxn],b[maxn];
int dp[maxn][maxn],pre[maxn][maxn];
int main() {
int n;
scf("%d",&n);
for(int i=1;i<=n;i++) scf("%d",&a[i]);
int m;
scf("%d",&m);
for(int i=1;i<=m;i++) scf("%d",&b[i]);
clr(dp,0);
clr(pre,0);
for(int i=1;i<=n;i++){
int ma=0,p=0;
for(int j=1;j<=m;j++){
dp[i][j]=dp[i-1][j];
pre[i][j]=pre[i-1][j];
if(a[i]==b[j]){
if(dp[i][j]<ma+1){
dp[i][j]=ma+1;
pre[i][j]=p;
}
}else if(b[j]<a[i]){
if(ma<dp[i-1][j]){
ma=dp[i-1][j];
p=j;
}
}
}
}
int ans=0,pos=0;
for(int i=1;i<=m;i++){
if(ans<dp[n][i]){
ans=dp[n][i];
pos=i;
}
}
VI lis;
lis.pb(pos);
int p=pre[n][pos];
while(p){
lis.pb(p);
p=pre[n][p];
}
reverse(lis.begin(),lis.end());
printf("%d\n",ans);
if(ans==0) return 0;
rep(i,0,lis.sz()-1) prf("%d ",b[lis[i]]);
prf("%d\n",b[lis[lis.sz()-1]]);
return 0;
}
//end-----------------------------------------------------------------------
/*
3 1 2 3
3 3 4 5
*/
Codeforces Beta Round #10 D. LCIS的更多相关文章
- Codeforces Beta Round #10 D. LCIS 动态规划
D. LCIS 题目连接: http://www.codeforces.com/contest/10/problem/D Description This problem differs from o ...
- Codeforces Beta Round #10 D. LCIS(DP&LCIS)
D. LCIS time limit per test 1 second memory limit per test 256 megabytes input standard input output ...
- Codeforces Beta Round #10 C. Digital Root 数学
C. Digital Root 题目连接: http://www.codeforces.com/contest/10/problem/C Description Not long ago Billy ...
- Codeforces Beta Round #10 B. Cinema Cashier 暴力
B. Cinema Cashier 题目连接: http://www.codeforces.com/contest/10/problem/B Description All cinema halls ...
- Codeforces Beta Round #10 A. Power Consumption Calculation 水题
A. Power Consumption Calculation 题目连接: http://www.codeforces.com/contest/10/problem/A Description To ...
- Codeforces Beta Round #10 B. Cinema Cashier (树状数组)
题目大意: n波人去k*k的电影院看电影. 要尽量往中间坐,往前坐. 直接枚举,贪心,能坐就坐,坐在离中心近期的地方. #include <cstdio> #include <ios ...
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- Codeforces Beta Round 84 (Div. 2 Only)
layout: post title: Codeforces Beta Round 84 (Div. 2 Only) author: "luowentaoaa" catalog: ...
随机推荐
- Hive通过查询语句向表中插入数据注意事项
最近在学习使用Hive(版本0.13.1)的过程中,发现了一些坑,它们或许是Hive提倡的比关系数据库更加自由的体现(同时引来一些问题),或许是一些bug.总而言之,这些都需要使用Hive的开发人员额 ...
- win8升级win10后的windows.old怎么删除
现在win10只是出了预览版本,还没有出正式版,但是相信一部分朋友都与小D一样,喜欢尝鲜,已上用上了win10了. 有些人是通过win8或是8.1直接安装升级上去的,这样操作是安装方便,但是系统会为了 ...
- 两种获取connectionString的方式
两种获取connectionString的方式 1. public static string connectionString = ConfigurationManager.ConnectionSt ...
- hive安装配置错误
1.Access denied for user 'hive'@'localhost' (using password: YES) 解决办法: 执行 hive --service metastore ...
- Objective-C 【@property 的参数问题】
------------------------------------------- @property参数 总的来说,这是一种编译器的特性(在生成@property的时候为@property添加相 ...
- Windows下用cmd命令安装及卸载服务
第一种方法: 1. 开始 ->运行 ->cmd2. cd到C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727(Framework版本号按IIS配置) ...
- UI1_UITableViewSearchController
// UI1_UITableViewSearchController // // Created by zhangxueming on 15/7/15. // Copyright (c) 2015年 ...
- Liskov替换原则(LSP)
OCP中,继承支持了抽象和多态特性. LSP:子类必须能够替换掉其基类. 反例:使用if/else判断类型,以便选择针对特定类型的正确行为. 有效性并非本质属性 模型的有效性,只能通过它的客户程序来表 ...
- usb2.0 规范学习笔记
1.一个USB HOST 最多可以同时支持128 个地址,地址0 作为默认地址,只在设备枚举期间临时使 用,而不能被分配给任何一个设备,因此一个USB HOST 最多可以同时支持127 个地址,如果一 ...
- 移动web开发的一些坑
类似的题目一搜一大堆,我就不再写那些meta标签类似的内容了,记录一下自己实现中遇到的问题,如果能帮到你,那再好不过了. 1px border的问题,大家能搜到很多方案,但如何选择还是要根据实际情况, ...