PCA understanding

我们希望获取玩具的位置,事实上我们只需要知道玩具在x轴的位置就可以了(但现实不知道)。我们利用三个坐标轴,获取了2*3维度的数据,现实中我们如何通过分析六维度数据来获取玩具的位置?

可以从上图看出camera A,B,C的x,y轴相关度都很明显,数据有冗余。

l 如何压缩数据?如何去除数据中的噪声,或者合并数据中相关的维度(来获取x轴数据)

l How to change the basis of the data

Let X be the original data set, where each column is a single sample of our data set. In the toy

example X is an m×n matrix where m = 6 and n = 72000.Let Y be another m×n matrix related by a linear transformation P. X is the original recorded data set and Y is a new representation of that data set. m=6(每组数据6维度)n=72000(72000组sample)

从数学方面解释就是,找个一个正定矩阵P, 使得数据X转换到Y之后(Y=PX),使得是对角矩阵,The rows of P are the principal components of X.

以特征值大小排列特征值与特征向量,数据压缩时,可以删掉后面较小的特征值与特征向量。

SVD与PCA的关系

可以看出通过SVD变换,对于X可以找出PCA中的转换矩阵P=U’, 对于X’可以找出PCA中的转换矩阵P=V’.

 

 

参考文献:

A_Tutorial_on_Principal_Component_Analysis

PCA understanding的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记

    这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...

  3. A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy

    A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy Content: Linear Transformations Prin ...

  4. Understanding Variational Autoencoders (VAEs)

    Understanding Variational Autoencoders (VAEs) 2019-09-29 11:33:18 This blog is from: https://towards ...

  5. cs231n spring 2017 lecture12 Visualizing and Understanding

    这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...

  6. 用scikit-learn学习主成分分析(PCA)

    在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...

  7. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  8. 机器学习基础与实践(三)----数据降维之PCA

    写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...

  9. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

随机推荐

  1. ActiveMQ之TemporaryQueue和TemporaryTopic

    TemporaryQueue和TemporaryTopic,从字面上就可以看出它们是“临时”的目的地.可以通过Session来创建,例如: TemporaryQueue replyQueue = se ...

  2. SQLserver中的xp_cmdshell

    shell是用户与操作系统对话的一个接口,通过shell告诉操作系统让系统执行我们的指令 xp_cmdshell在sqlserver中默认是关闭的存在安全隐患. --打开xp_cmdshell ;;R ...

  3. GOOGLE影像地图

    卫星地图高清 //  

  4. OpenWRT 路由配置技巧

    随着最近 Google 在国内已经完全无法访问,使得通过 VPN 访问网络的需求更加强烈,本文介绍的方法可以使一个普通的路由具备稳定连接 VPN 的能力,并能够根据目标访问网站选择国内外线路,从而得到 ...

  5. "=="和equals方法究竟有什么区别

    (单独把一个东西说清楚,然后再说清楚另一个,这样,它们的区别自然就出来了,混在一起说,则很难说清楚) ==操作符专门用来比较两个变量的值是否相等,也就是用于比较变量所对应的内存中所存储的数值是否相同, ...

  6. mysql笔记整理

    删除整个表 TRUNCATE TABLE 表名; 持久链接 自动提交

  7. NET免费服务器

    NET免费服务器 1.先注册一个号.地址:https://appharbor.com/ 2.看看有没有你需要的插件,基本上都是免费的 3.本地创建git库 4.复制git远程仓库的地址 5.推送到远程 ...

  8. Sublime Text 2 入门

    SublimeText 2 的介绍视频: http://player.youku.com/player.php/partnerid/XOTcy/sid/XMzU5NzQ5ODgw/v.swf   以下 ...

  9. OC中的点语法,成员变量的作用域

    点语法 点语法本质是函数的调用,不是像java中那样,是用来访问成员变量的:oc中访问成员变量是用 -> 访问的: Person *p = [Person new]; p.age = 10; / ...

  10. Jenkins入门-转

    reference : http://www.cnblogs.com/itech/archive/2011/11/23/2260009.html 在网上貌似没有找到Jenkins的中文的太多的文档,有 ...