Spark学习笔记之SparkRDD

一、   基本概念

  1. RDD(resilient distributed datasets)弹性分布式数据集。

来自于两方面

①   内存集合和外部存储系统

②   通过转换来自于其他RDD,如map,filter等

2.创建操作(creation operation):RDD的创建由SparkContext来负责。

3.转换操作(transformation operation):将一个RDD通过一定操作转换为另一个RDD。

4.控制操作(control operation):对RDD进行持久化等。

5.行动操作(action operation):Spark为惰性计算,对RDD的行动操作都会触发Spark作业的运行。

基本分为两类

①   使操作结果变为Scala变量或者标量。

②   将RDD保存到外部文件或者数据库系统中。

6.RDD分区(partitions)

分区多少关系到对这个RDD进行并行计算的粒度,每一个RDD分区的计算操作都在一个单独的任务中被执行

7.RDD优先位置(preferredLocations)

是RDD中每个分区所存储的位置

8.RDD依赖关系(dependencies)

窄依赖:每一个父RDD的分区最多只被子RDD的一个分区使用

宽依赖:多个子RDD的分区会依赖同一个父RDD的分区

9.RDD分区计算(compute)

Spark中每个RDD的计算都是以分区为单位的,而且RDD中的compute函数都是在对迭代器进行复合,只返回相应分区数据的迭代器。

10.RDD分区函数(partitioner)

两类分区函数:HashPartitioner和RangPartitioner。

二、   创建操作

  1. 集合创建操作:makeRDD可以指定每个分区perferredLocations参数parallelize则没有
  2. 存储创建操作:Spark与Hadoop完全兼容,所以对Hadoop所支持的文件类型或者数据库类型,Spark同样支持。
  3. 基本转换操作

三、   转换操作

map:将RDD中T类型一对一转换为U

distinct:返回RDD不重复元素

flatMap:将元素一对多转换

reparation、coalesce:对RDD分区重新划分,reparation只是coalesce接口中shuffle为true的简易实现

randomSplit:将RDD切分

glom:将类型为T的元素转换为Array[T]

union等等

  1. 键值RDD转换操作

partitionBy、mapValues、flatMapValues等

  1. RDD依赖关系,Spark生成的RDD对象一般多于用户书写的Spark应用程序中包含的RDD,因为RDD在转换操作过程中产生临时的RDD

四、   控制操作

cache():

persist():保留着RDD的依赖关系

checkpoint(level:StorageLevel):RDD[T]切断RDD依赖关系

五、   行动操作

  1. 集合标量行动操作

first:返回RDD第一个元素

count:返回RDD中元素个数

reduce:对RDD的元素进行二元计算

aggregate:聚合函数

fold:是aggregate的便利借口

  1. 存储行动操作

saveAsHadoopFile

saveAsHadoopDataset等

Spark学习笔记之SparkRDD的更多相关文章

  1. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  2. Spark学习笔记2(spark所需环境配置

    Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...

  3. Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)

    Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...

  4. Spark学习笔记-GraphX-1

    Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明: ...

  5. Spark学习笔记3——RDD(下)

    目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...

  6. Spark学习笔记0——简单了解和技术架构

    目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...

  7. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  8. Spark学习笔记1——第一个Spark程序:单词数统计

    Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...

  9. Spark学习笔记——读写Hbase

    1.首先在Hbase中建立一张表,名字为student 参考 Hbase学习笔记——基本CRUD操作 一个cell的值,取决于Row,Column family,Column Qualifier和Ti ...

随机推荐

  1. JAVA课程体系

    文件流 单点登录 maven.maven私服 jenkins 小程序 支付 webservice/webapi redis 工作流 权限:shiro 高并发 springBoot dubbo 消息推送 ...

  2. Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

    摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...

  3. AES加密算法C++实现

    我从网上下载了一套AES加密算法的C++实现,代码如下: (1)aes.h #ifndef SRC_UTILS_AES_H #define SRC_UTILS_AES_H class AES { pu ...

  4. protobuf C++ 使用示例

    1.在.proto文件中定义消息格式 2.使用protobuf编译器 3.使用c++ api来读写消息 0.为何使用protobuf? 1.原始内存数据结构,可以以二进制方式sent/saved.这种 ...

  5. 解决Excel 2010只有一个窗口的问题

    Excel 2010打开多个文件,但只有一个窗口的问题. 一般首次安装没有这个问题,碰到装了WPS后再卸载WPS,还有就是OFFICE卸载后重装,也会发生这个现像. 一.: 删除 HKEY_CLASS ...

  6. PHP静态变量定义memcache对象的调用

    <?php $do = $_GET['do']; myCache($do,'do'); echo myCache($do); /** * 缓存管理 * @param mixed $name 缓存 ...

  7. c#Ice开发之环境配置(一)

    第一步,基于Windows下的安装,所以下载windows版的Ice,官网最新版本是Ice3.5.1: http://www.zeroc.com/download/ 安装完成可以在vs-工具的最下面看 ...

  8. java如何区分是form表单请求,还是ajax请求

    requestType = request.getHeader("X-Requested-With");                 if(requestType==null) ...

  9. OpenCV配置经历简述

    关于OpenCV的配置过程在这里做一简述和记录. 配置的是OpenCV2.2.0,环境为VS2010. 首先在OpenCV官网(http://opencv.org/downloads.html)下载了 ...

  10. 【解决】org.apache.hadoop.util.Shell$ExitCodeException: /bin/bash: line 0: fg: no job control

    [环境信息] Hadoop版本:2.4.0 客户端OS:Windows Server 2008 R2 服务器端OS:CentOS 6.4 [问题现象] 在通过Windows客户端向Linux服务器提交 ...