caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel
bvlc_reference_caffenet.caffemodel
---
name: BAIR/BVLC CaffeNet Model
caffemodel: bvlc_reference_caffenet.caffemodel
caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
license: unrestricted
sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46
caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077
--- This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html).
It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: - not training with the relighting data-augmentation;
- the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). This model is snapshot of iteration 310,000.
The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328.
This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop.
(Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) This model was trained by Jeff Donahue @jeffdonahue ## License This model is released for unrestricted use.
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/2.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/2.jpg ----------
0.3411 - "n03676483 lipstick, lip rouge"
0.1024 - "n03325584 feather boa, boa"
0.0978 - "n07615774 ice lolly, lolly, lollipop, popsicle"
0.0734 - "n02786058 Band Aid"
0.0601 - "n04357314 sunscreen, sunblock, sun blocker" 翻译: 口红,口红
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \
> /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \
> data/ilsvrc12/imagenet_mean.binaryproto \
> /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \
> /media/whale/wsWin10/images/person/3.jpg
labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/3.jpg ----------
0.4030 - "n02883205 bow tie, bow-tie, bowtie"
0.3799 - "n04350905 suit, suit of clothes"
0.0473 - "n02865351 bolo tie, bolo, bola tie, bola"
0.0131 - "n04591157 Windsor tie"
0.0114 - "n02786058 Band Aid"
领结,领带,领结
caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel的更多相关文章
- bvlc_reference_caffenet.caffemodel
#uncoding:utf-8 # set up Python environment: numpy for numerical routines, and matplotlib for plotti ...
- Caffe学习系列(20):用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- 【转】Caffe初试(十)命令行解析
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
- Caffe fine-tuning 微调网络
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的De ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- caffe使用
训练时, solver.prototxt中使用的是train_val.prototxt ./build/tools/caffe/train -solver ./models/bvlc_referenc ...
- 71 mac boook pro 无 gpu 下caffe 安装
71 mac boook pro 无 gpu 下caffe 安装 1.首先安装homebrew工具,相当于Mac下的yum或apt ruby -e "$(curl -fsSL https:/ ...
- Caffe学习系列(13):对训练好的模型进行fine-tune
使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/c ...
- Caffe学习系列(10):命令行解析
训练网络命令: sudo sh ./build/tools/caffe train --solver=examples/mnist/train_lenet.sh 用预先训练好的权重来fine-tuni ...
随机推荐
- 【nginx】nginx的介绍
Nginx 反向代理初印象 Nginx (“engine x”) 是一个高性能的HTTP和反向代理 服务器,也是一个IMAP/POP3/SMTP服务器.其特点是占有内存少,并发能力强,事实上nginx ...
- 修改手機的 input source 及 charger 及 usb 相關電路後,容易忽略的事項
input source 及 charger 需要注意, 是否可以在關機的狀況下充電, 當然 開機充電 是一定要的. usb 部分需要注意, 是否可以在沒有電或者是有電的狀況下 download 程式 ...
- 2016百度之星资格赛 Round1(2,3,4题)
Problem B Accepts: 2515 Submissions: 9216 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- 洛谷——1968 美元汇率(DP)
题目背景 此处省略maxint+1个数 题目描述 在以后的若干天里戴维将学习美元与德国马克的汇率.编写程序帮助戴维何时应买或卖马克或美元,使他从100美元开始,最后能获得最高可能的价值. 输入输出格式 ...
- Mac 安装brew和安装composer
一.安装brew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/mast ...
- HTML DOM介绍
HTML DOM定义了一系列的对象,以及访问和处理HTML的方法.通过DOM可以浏览所有的HTML元素,不但可以修改或者删除元素的文本和属性,而且可以创建新的元素. 一.首先对一个元素进行操作前,要得 ...
- go --socket通讯(TCP服务端与客户端的实现)
这篇文章主要使用Go语言实现一个简单的TCP服务器和客户端.服务器和客户端之间的协议是 ECHO, 这个RFC 862定义的一个简单协议.为什么说这个协议很简单呢, 这是因为服务器只需把收到的客户端的 ...
- MyEclipse出错解决
错误信息: Deployment failure on Tomcat 6.x. Could not copy all resources to C:\Tomcat 6.0\webapps\JavaP ...
- dedecms 留言板中引用模板文件方法
最近在做一个用dedecms搭建的网站,客户提出要有留言板,dedecms带了一个留言板的模块,安装倒是十分简便,但装完后发现界面十分粗糙.装修比较简单,但是发现遇到一个问题:网站通用的导航栏无法显示 ...
- ASP.NET Web API路由规则(二) 【转】
http://www.cnblogs.com/liulun/archive/2012/06/20/2556556.html 默认的规则 在ASP.NET MVC4中 global.asax.cs代码中 ...