实现的是预测 低 出生 体重 的 概率。
尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kindle 版本.

# Logistic Regression
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve logistic regression.
# y = sigmoid(Ax + b)
#
# We will use the low birth weight data, specifically:
# y = 0 or 1 = low birth weight
# x = demographic and medical history data import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
from tensorflow.python.framework import ops
import os.path
import csv ops.reset_default_graph() # Create graph
sess = tf.Session() ###
# Obtain and prepare data for modeling
### # Set name of data file
birth_weight_file = 'birth_weight.csv' # Download data and create data file if file does not exist in current directory
if not os.path.exists(birth_weight_file):
birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n')
birth_header = birth_data[0].split('\t')
birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]
with open(birth_weight_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(birth_header)
writer.writerows(birth_data)
f.close() # Read birth weight data into memory
birth_data = []
with open(birth_weight_file, newline='') as csvfile:
csv_reader = csv.reader(csvfile)
birth_header = next(csv_reader)
for row in csv_reader:
birth_data.append(row) birth_data = [[float(x) for x in row] for row in birth_data] # Pull out target variable
y_vals = np.array([x[0] for x in birth_data])
# Pull out predictor variables (not id, not target, and not birthweight)
x_vals = np.array([x[1:8] for x in birth_data]) # Set for reproducible results
seed = 99
np.random.seed(seed)
tf.set_random_seed(seed) # Split data into train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices] # Normalize by column (min-max norm)
def normalize_cols(m):
col_max = m.max(axis=0)
col_min = m.min(axis=0)
return (m-col_min) / (col_max - col_min) x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test)) ###
# Define Tensorflow computational graph¶
### # Declare batch size
batch_size = 25 # Initialize placeholders
x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[7,1]))
b = tf.Variable(tf.random_normal(shape=[1,1])) # Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function (Cross Entropy loss)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target)) # Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss) ###
# Train model
### # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Actual Prediction
prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
accuracy = tf.reduce_mean(predictions_correct) # Training loop
loss_vec = []
train_acc = []
test_acc = []
for i in range(15000):
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
rand_x = x_vals_train[rand_index]
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)
temp_acc_train = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])})
train_acc.append(temp_acc_train)
temp_acc_test = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})
test_acc.append(temp_acc_test)
if (i+1)%300==0:
print('Loss = ' + str(temp_loss)) ###
# Display model performance
### # Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross Entropy Loss')
plt.show() # Plot train and test accuracy
plt.plot(train_acc, 'k-', label='Train Set Accuracy')
plt.plot(test_acc, 'r--', label='Test Set Accuracy')
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!的更多相关文章

  1. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

  2. 深入浅出TensorFlow(二):TensorFlow解决MNIST问题入门

    2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着 ...

  3. 强化学习之一:从TensorFlow开始(Start from TensorFlow)

    本文是对Tensorflow官方教程的个人(tomqianmaple@outlook.com)中文翻译,供大家学习参考. 官方教程链接 tf的扬帆起航Getting Started With Tens ...

  4. [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems"

    [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed ...

  5. 学习tensorflow之mac上安装tensorflow

    背景 听说谷歌的第二代机器学习的框架tensorflow开源了,我也心血来潮去探探大牛的产品.怎奈安装就折腾了一天,现在整理出来备忘. tensorflow官方网站给出的安装步骤很简单: # Only ...

  6. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  7. Tensorflow从入门到精通之——Tensorflow基本操作

    前边的章节介绍了什么是Tensorflow,本节将带大家真正走进Tensorflow的世界,学习Tensorflow一些基本的操作及使用方法.同时也欢迎大家关注我们的网站和系列教程:http://ww ...

  8. 深度学习之 TensorFlow(二):TensorFlow 基础知识

    1.TensorFlow 系统架构: 分为设备层和网络层.数据操作层.图计算层.API 层.应用层.其中设备层和网络层.数据操作层.图计算层是 TensorFlow 的核心层. 2.TensorFlo ...

  9. TensorFlow.org教程笔记(一)Tensorflow初上手

    本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决 ...

随机推荐

  1. dos下连接mysql,显示表结构

    C:\Windows\system32>mysql -hlocalhoset -uroot -p Enter password: ***** mysql> use ssh Database ...

  2. 在Centos 7上安装配置 Apche Kafka 分布式消息系统集群

    Apache Kafka是一种颇受欢迎的分布式消息代理系统,旨在有效地处理大量的实时数据.Kafka集群不仅具有高度可扩展性和容错性,而且与其他消息代理(如ActiveMQ和RabbitMQ)相比,还 ...

  3. 设计模式之MVC设计模式初阶

    MVC M:Model(数据) V:View(界面) C:Control(控制) 1⃣️Control可以直接访问View和Model 2⃣️View不可以拥有Control和Model属性,降低耦合 ...

  4. ARM和STM32的区别及ARM公司架构的发展

    ARM和STM32的区别及ARM公司架构的发展 转:https://www.cnblogs.com/kwdeblog/p/5260348.html ARM是英国的芯片设计公司,其最成功的莫过于32位嵌 ...

  5. CentOS 6.5语言包裁剪

    https://www.ibm.com/developerworks/cn/linux/l-cn-linuxglb/ 浅析 Linux 的国际化与本地化机制 Linux 是一个国际化的操作系统,它的工 ...

  6. AWR元数据的迁移或导入到其它数据库

    我们能够将AWR元数据迁移(导入)到其它数据库.低版本号的导入到高版本号,再用高版本号的数据库生成AWR报告,也能使用一些新特性,如 SQL ordered by Physical Reads (Un ...

  7. 修复open-ssl漏洞,升级open-ssl版本

    升级openssl环境至openssl-1.0.1g 1.查看源版本 [root@zj ~]# openssl version -a OpenSSL 0.9.8e-fips-rhel5 01 Jul ...

  8. Ubuntu/CentOS下源码编译安装Php 5.6基本参数

    先确认安装libxml2 apt-get install libxml2 libxml2-dev或者yum install libxml2 libxml2-dev ./configure --pref ...

  9. WCF配置心得

    根据蒋金楠老师的博文所说的, WCF的终结点有三个要素组成,分别是地址(Address).绑定(Binding)和契约(Contract),简记可写成Endpoint = ABC. 地址:地址决定了服 ...

  10. 如何理解API,API 是如何工作的

    大神博客:https://blog.csdn.net/cumtdeyurenjie/article/details/80211896