刚学的欧拉反演(在最后)就用上了,挺好$qwq$


题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$

原式

$=2*\sum_{i=1}^{N}\sum_{j=1}^{M}gcd(i,j)\space-m*n$

$=2*\sum_{i=1}^{N}\sum_{j=1}^M\sum_{d|gcd(i,j)}\varphi(d)\space-m*n$

$=2*\sum_{i=1}^{\lfloor \frac{N}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{M}{d} \rfloor}\sum_{d=1}^N\varphi(d)\space-m*n$

$=2*\sum_{d=1}^N\varphi(d)\lfloor \frac{N}{d}\rfloor \lfloor \frac{M}{d} \rfloor \space-m*n$

所以又可以整除分块+线性筛$\varphi(n)$前缀和$

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register int
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
const int N=;
ll p[N],pri[N],cnt;
bool v[N];
inline void PHI(int n) { p[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,p[i]=i-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) {
p[i*pri[j]]=pri[j]*p[i];
break;
} p[i*pri[j]]=p[i]*p[pri[j]];
}
} for(R i=;i<=n;++i) p[i]+=p[i-];
} int n,m;
ll ans;
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
PHI(); n=g(),m=g(); n>m?swap(n,m):void();
for(R l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=(ll)*(p[r]-p[l-])*(n/l)*(m/l);
} printf("%lld\n",ans-(ll)n*m);
}

2019.06.09

Luogu P1447 [NOI2010]能量采集 数论??欧拉的更多相关文章

  1. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  2. luogu P1447 [NOI2010]能量采集 欧拉反演

    题面 题目要我们求的东西可以化为: \[\sum_{i=1}^{n}\sum_{j=1}^{m}2*gcd(i,j)-1\] \[-nm+2\sum_{i=1}^{n}\sum_{j=1}^{m}gc ...

  3. Luogu P1447 [NOI2010]能量采集

    Preface 最近反演题做多了看什么都想反演.这道题由于数据弱,解法多种多样,这里简单分析一下. 首先转化下题目就是对于一个点\((x,y)\),所消耗的能量就是\(2(\gcd(x,y)-1)+1 ...

  4. 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...

  5. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  6. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  7. 洛谷P1447 - [NOI2010]能量采集

    Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单 ...

  8. P1447 [NOI2010]能量采集

    题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...

  9. 洛谷 P1447 [NOI2010]能量采集 (莫比乌斯反演)

    题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m} ...

随机推荐

  1. Matlab之rand(), randn(), randi()函数的使用方法

    1.  rand()函数用于生成取值在(0~1)之间均匀分布的伪随机数.rand(n):生成n*n的0~1之间的满足均匀分布的伪随机矩阵:rand(m,n):生成m*n的伪随机数:rand(m,n,' ...

  2. 简单的可兼容所有浏览器的操作html元素的javascript框架

    1.根据id名称取元素  $id(idName) 2.根据class定义取元素  $class(className)返回所有class被定义成className的元素数组,或者$Eclass(clas ...

  3. IDEAL葵花宝典:java代码开发规范插件 checkstyle、visualVM、PMD 插件

    前言: visualVM: 运行java程序的时候启动visualvm,方便查看jvm的情况 比如堆内存大小的分配:某个对象占用了多大的内存,jvm调优必备工具. checkstyle: CheckS ...

  4. SpringBoot_Exception_02_Failed to execute goal org.springframework.boot:spring-boot-maven-plugin:1.5.6.RELEASE:run

    一.现象 上一个异常解决之后,出现了这个异常: [WARNING] The requested profile "pom.xml" could not be activated b ...

  5. 疑难杂症:“代理 XP”组件已作为此服务器安全配置的一部分被关闭。系统管理员可以使用 sp_configure 来启用“代理 XP”。

    “代理 XP”组件已作为此服务器安全配置的一部分被关闭.系统管理员可以使用 sp_configure 来启用“代理 XP”.有关启用“代理 XP”的详细信息,请参阅 SQL Server 联机丛书中的 ...

  6. stack_1.设计一个有getMin功能的栈

    思路 : 生成两个栈($stack ,$stack_min ),往$stack塞数据($value)的时候 ,比较一下$value和$stack_min最上面的元素的大小,如果$value小,则压入$ ...

  7. 【LeetCode】Reverse Words in a String 反转字符串中的单词

    一年没有管理博客园了,说来实在惭愧.. 最近开始刷LeetCode,之前没刷过,说来也实在惭愧... 刚开始按 AC Rates 从简单到难刷,觉得略无聊,就决定按 Add Date 刷,以后也可能看 ...

  8. 【Lintcode】 035.Reverse Linked List

    题目: Reverse a linked list. Example For linked list 1->2->3, the reversed linked list is 3-> ...

  9. IHE-PIX 备注

    IHE给出了各个Actor之间如何通讯的建议: 1.       应用程序通讯时必须用MLLP包装或者解析. 2.       客户端建立连接后,服务器端必须用此连接进行应答.客户端可以继续用此连接启 ...

  10. WPF TextBox PreviewTextInput handle IME (chinese)

    今天调试自己写的WPF的Behavior, 是关于TextBox只能输入数据或者小数点的. 发现有个问题, 就是英文IME下字母等等都能过滤, 但是一旦切换到中文输入法, 就会发现在OnPreview ...