C. A Twisty Movement

time limit per test1 second

memory limit per test256 megabytes

Problem Description

A dragon symbolizes wisdom, power and wealth. On Lunar New Year’s Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.

A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, …, an.

Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, …, ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

A non-decreasing subsequence is a sequence of indices p1, p2, …, pk, such that p1 < p2 < … < pk and ap1 ≤ ap2 ≤ … ≤ apk. The length of the subsequence is k.

Input

The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.

The second line contains n space-separated integers, describing the original sequence a1, a2, …, an (1 ≤ ai ≤ 2, i = 1, 2, …, n).

Output

Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

Examples

input

4

1 2 1 2

output

4

input

10

1 1 2 2 2 1 1 2 2 1

output

9

Note

In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.

In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.


解题心得:

  1. 题意很简单就是输出最长不递减子序列的长度。
  2. 读错题了啊,把子序列看成子区间弄错了,。
  3. 就是一个dp加一点思维
    • 先求出1的前缀和,2的后缀和
    • dp[i][j][1]代表在区间(i,j)之间以1结尾的最长不递增子序列的长度。

      dp[i][j][2]代表在区间(i,j)之间以2结尾的最长不递增子系列的长度。
    • 状态转移方程式就很容易出来了dp[i][j][1] = max(dp[i][j-1][1],dp[i][j-1][2]) + (num[j] == 1)

      dp[i][j][2] = dp[i][j-1][2] + (num[j] == 2)
  4. 至于为什么要求不递增的dp,那就是要翻转啊,翻转之后不递增不就变成不递减了吗。而前缀和和后缀和就是考考思维。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 2010;
int dp[maxn][maxn][3],num[maxn],sum1[maxn],sum2[maxn];
int Max = -1,n; int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&num[i]);
for(int i=0;i<n;i++)
sum1[i] = sum1[i-1] + (num[i] == 1);
for(int i=n-1;i>=0;i--)
sum2[i] = sum2[i+1] + (num[i] == 2);
for(int i=0;i<n;i++)
for(int j=i;j<n;j++){
dp[i][j][2] = dp[i][j-1][2] + (num[j] == 2);
dp[i][j][1] = max(dp[i][j-1][1],dp[i][j-1][2]) + (num[j] == 1);
Max = max(dp[i][j][1] + sum1[i-1] + sum2[j+1],Max);
Max = max(dp[i][j][2] + sum1[i-1] + sum2[j+1],Max);
}
printf("%d",Max);
return 0;
}

Codeforces Round #462 (Div. 2) C. A Twisty Movement的更多相关文章

  1. Codeforces Round #462 (Div. 2) C DP

    C. A Twisty Movement time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Codeforces Round #462 (Div. 2), problem: (C) A Twisty Movement (求可以转一次区间的不递增子序列元素只有1,2)

    题目意思: 给长度为n(n<=2000)的数字串,数字只能为1或者2,可以将其中一段区间[l,r]翻转,求翻转后的最长非递减子序列长度. 题解:求出1的前缀和,2的后缀和,以及区间[i,j]的最 ...

  3. 【Codeforces Round #462 (Div. 1) A】 A Twisty Movement

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] ans初值值为a[1..n]中1的个数. 接下来考虑以2为结尾的最长上升子序列的个数. 枚举中间点i. 计算1..i-1中1的个数c ...

  4. Codeforces Round #462 (Div. 2) B-A Prosperous Lot

    B. A Prosperous Lot time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Codeforces Round #462 (Div. 2)

    这是我打的第三场cf,个人的表现还是有点不成熟.暴露出了我的一些问题. 先打开A题,大概3min看懂题意+一小会儿的思考后开始码代码.一开始想着贪心地只取两个端点的值就好了,正准备交的时候回想起上次A ...

  6. Codeforces Round #462 (Div. 2) D. A Determined Cleanup

    D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...

  7. Codeforces Round #462 (Div. 2) A Compatible Pair

    A. A Compatible Pair time limit per test1 second memory limit per test256 megabytes Problem Descript ...

  8. 【Codeforces Round #462 (Div. 1) B】A Determined Cleanup

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设\(设f(x)=a_d*x^{d}+a_{d-1}*x^{d-1}+...+a_1*x+a_0\) 用它去除x+k 用多项式除法除 ...

  9. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

随机推荐

  1. pat1034. Head of a Gang (30)

    1034. Head of a Gang (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue One wa ...

  2. 3年,阅读量100万+, Github Star 15000+

    这两天突然发现,三年前在博客园写的一篇文章阅读量超过百万了,对,还是技术文章.这个让我蛮惊讶的,当时刚开始写这篇文章的时候,一周的阅读量也才两三千,随着时间慢慢的过去,在搜索引擎的加持下竟然超过了百万 ...

  3. C#面试常见题

    1. 简述 private. protected. public. internal 修饰符的访问权限. 答: private : 私有成员, 在类的内部才可以访问. protected : 保护成员 ...

  4. css相关知识

    display: block; "块级元素". display: inline; "行内元素". display: none; "在不删除元素的情况下 ...

  5. TemplateBinding与Binding区别,以及WPF自定义控件开发的遭遇

    在上一次的文章WPF OnApplyTemplate 不执行 或者执行滞后的疑惑谈到怎么正确的开发自定义控件,我们控件的样式中,属性的绑定一般都是用TemplateBinding来完成,如下一个基本的 ...

  6. 面向对象设计与构造:oo课程总结

    面向对象设计与构造:OO课程总结 第一部分:UML单元架构设计 第一次作业 UML图 MyUmlInteraction类实现接口方法,ClassUnit和InterfaceUnit管理UML图中的类和 ...

  7. mysql查询索引

    mysql在使用like查询中,能不能用到索引?在什么地方使用索引呢? 在使用like的时候,如果使用‘%%’,会不会用到索引呢? EXPLAIN SELECT * FROM `user` WHERE ...

  8. WPF动画的几种模式

    最近在用WPF做简单动画,以下是几点经验总结: 1. 使用DispatcherTimer做动画 VB6的年代大家就用Timer做动画了,不用多解释,这个DispatcherTimer和本身的Timer ...

  9. 使用data-自定义数据及如何获取该值

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  10. 内置函数isNaN()

    NaN(not a number)的产生:算术运算返回一个未定义的或无法表示的值 1.NaN并不一定用于表示某些值超出表示范围的情况.将某些不能强制转换为数值的非数值转换为数值的时候,也会得到NaN. ...