文件读取

df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int) dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

  

数据预处理

df.duplicated()           返回各行是否是上一行的重复行
df.drop_duplicates() 删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0) 用实数0填充na
df.dropna() axis=0|1 0-index 1-column
how='all'|'any' all-全部是NA才删 any-只要有NA就全删
del df['col1'] 直接删除某一列
df.drop(['col1',...], aixs=1) 删除指定列,也可以删除行
df.column = col_lst 重新制定列名
df.rename(index={'row1':'A'}, 重命名索引名和列名
columns={'col1':'A1'})
df.replace(dict) 替换df值,前后值可以用字典表,{1:‘A’, '2':'B'} def get_digits(str):
m = re.match(r'(\d+(\.\d+)?)', str.decode('utf-8'))
if m is not None:
return float(m.groups()[0])
else:
return 0
df.apply(get_digits) DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func) Series.map,只对列进行函数转换 pd.merge(df1, df2, on='col1',
how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序 pd.merge(df1, df2, left_on='col1',
right_on='col2') df1 df2没有公共列名,所以合并需指定两边的参考列 pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN df1.combine_first(df2) 用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上 df.stack() 列旋转成行,也就是列名变为索引名,原索引变成多层索引,结果是具有多层索引的Series,实际上是把数据集拉长 df.unstack() 将含有多层索引的Series转换为DataFrame,实际上是把数据集压扁,如果某一列具有较少类别,那么把这些类别拉出来作为列
df.pivot() 实际上是unstack的应用,把数据集压扁 pd.get_dummies(df['col1'], prefix='key') 某列含有有限个值,且这些值一般是字符串,例如国家,借鉴位图的思想,可以把k个国家这一列量化成k列,每列用0、1表示

  

数据筛选

df.columns             列名,返回Index类型的列的集合
df.index 索引名,返回Index类型的索引的集合
df.shape 返回tuple,行x列
df.head(n=N) 返回前N条
df.tail(n=M) 返回后M条
df.values 值的二维数组,以numpy.ndarray对象返回
df.index DataFrame的索引,索引不可以直接赋值修改
df.reindex(index=['row1', 'row2',...]
columns=['col1', 'col2',...]) 根据新索引重新排序
df[m:n] 切片,选取m~n-1行
df[df['col1'] > 1] 选取满足条件的行
df.query('col1 > 1') 选取满足条件的行
df.query('col1==[v1,v2,...]')
df.ix[:,'col1'] 选取某一列
df.ix['row1', 'col2'] 选取某一元素
df.ix[:,:'col2'] 切片选取某一列之前(包括col2)的所有列
df.loc[m:n] 获取从m~n行(推荐)
df.iloc[m:n] 获取从m~n-1行
df.loc[m:n-1,'col1':'coln'] 获取从m~n行的col1~coln列 sr=df['col'] 取某一列,返回Series
sr.values Series的值,以numpy.ndarray对象返回
sr.index Series的索引,以index对象返回

  

数据运算与排序

df.T                   DataFrame转置
df1 + df2 按照索引和列相加,得到并集,NaN填充
df1.add(df2, fill_value=0) 用其他值填充
df1.add/sub//mul/div 四则运算的方法
df - sr DataFrame的所有行同时减去Series
df * N 所有元素乘以N
df.add(sr, axis=0) DataFrame的所有列同时减去Series sr.order() Series升序排列
df.sort_index(aixs=0, ascending=True) 按行索引升序
df.sort_index(by=['col1', 'col2'...]) 按指定列优先排序
df.rank() 计算排名rank值

  

数学统计

sr.unique             Series去重
sr.value_counts() Series统计频率,并从大到小排序,DataFrame没有这个方法
sr.describe() 返回基本统计量和分位数 df.describe() 按各列返回基本统计量和分位数
df.count() 求非NA值得数量
df.max() 求最大值
df.min() 求最大值
df.sum(axis=0) 按各列求和
df.mean() 按各列求平均值
df.median() 求中位数
df.var() 求方差
df.std() 求标准差
df.mad() 根据平均值计算平均绝对利差
df.cumsum() 求累计和
sr1.corr(sr2) 求相关系数
df.cov() 求协方差矩阵
df1.corrwith(df2) 求相关系数 pd.cut(array1, bins) 求一维数据的区间分布
pd.qcut(array1, 4) 按指定分位数进行区间划分,4可以替换成自定义的分位数列表 df['col1'].groupby(df['col2']) 列1按照列2分组,即列2作为key
df.groupby('col1') DataFrame按照列1分组
grouped.aggreagte(func) 分组后根据传入函数来聚合
grouped.aggregate([f1, f2,...]) 根据多个函数聚合,表现成多列,函数名为列名
grouped.aggregate([('f1_name', f1), ('f2_name', f2)]) 重命名聚合后的列名
grouped.aggregate({'col1':f1, 'col2':f2,...}) 对不同的列应用不同函数的聚合,函数也可以是多个 df.pivot_table(['col1', 'col2'],
rows=['row1', 'row2'],
aggfunc=[np.mean, np.sum]
fill_value=0,
margins=True) 根据row1, row2对col1, col2做分组聚合,聚合方法可以指定多种,并用指定值替换缺省值 pd.crosstab(df['col1'], df['col2']) 交叉表,计算分组的频率

  

5.2 pandas 常用函数清单的更多相关文章

  1. pandas常用函数之shift

    shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...

  2. pandas常用函数之diff

    diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...

  3. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

  4. 【转载】pandas常用函数

    原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...

  5. Pandas常用函数入门

    一.Pandas Python Data Analysis Library或Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas纳入了大量库和一些标准的数据模型, ...

  6. pandas常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  7. 整理 pandas 常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  8. python,pandas常用函数

    一.rename,更改df的列名和行索引 df=pd.DataFrame(np.arange(,).reshape(,)) print(df) print(type(df)) 结果为: <cla ...

  9. pandas 常用函数

随机推荐

  1. 如何下载最新的固件到Pixhawk

    连接Pixhawk至电脑 当Mission Planner 已经安装至你的电脑上,使用micro USB数据线连接pixhawk到您的计算机上. 使用一个USB端口直接在您的计算机上,不要用USB集线 ...

  2. substring、slice、substr的区别

    首先定义一个变量便于下面测试:var str = "xx351223441";   substring: str.substring(form,to):从字符串里截取下标为form ...

  3. RING3到RING0

    当我在说跳转时,说的什么? CPU有很多指令,不是所有的指令都能够随时用,比如 ltr指令就不是随便什么时候能用,在保护模式下,如果你不安规则来执行指令,CPU就会抛出异常,比如你在INTEL手册上就 ...

  4. Python __builtin__模块

    你有没有好奇过当我们打开Python后就可以直接使用str(),list(),eval(),print(),max()这样的函数,而不用导入任何模块? 其实原因很简单,就是当我们打开Python解释器 ...

  5. [Asp.Net] MVC 和Web API Action 获取参数的区别

    Asp.net MVC 和web api 的action 在获取从前台传入的数据是有很大不同 前台使用ajax的方式向后台发起post的请求 Content-Type:application/json ...

  6. HDU3954 线段树(区间更新 + 点更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3954 , 一道比较好的线段树题,值得做. 题目是NotOnlySuccess大神出的,借此题来膜拜一下 ...

  7. C语言异常处理编程的三个境界

    http://blog.csdn.net/treefish2012/article/details/17466487 这是上一次看完Herb Sutter的<Exceptional C++> ...

  8. 【转】iOS 上常用的两个功能:点击屏幕和return退出隐藏键盘和解决虚拟键盘挡住UITextField的方法

    iOS上面对键盘的处理很不人性化,所以这些功能都需要自己来实现, 首先是点击return和屏幕隐藏键盘 这个首先引用双子座的博客 http://my.oschina.net/plumsoft/blog ...

  9. cloudera manager的卸载以及重新安装

    1 卸载cloudera 参照 http://www.cnblogs.com/chenfool/p/3738540.html Cloudera 的官方介绍: http://www.cloudera.c ...

  10. Ribbon 负载均衡搭建

    本机IP为  192.168.1.102 1.   新建Maven  项目    ribbon 2.   pom.xml <project xmlns="http://maven.ap ...