spark运行模式之二:Spark的Standalone模式安装部署
Spark运行模式
Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Standalone 模式,对于大多数情况 Standalone 模式就足够了,如果企业已经有 Yarn 或者 Mesos 环境,也是很方便部署的。
- local(本地模式):常用于本地开发测试,本地还分为local单线程和local-cluster多线程;
- standalone(集群模式):典型的Mater/slave模式,不过也能看出Master是有单点故障的;Spark支持ZooKeeper来实现 HA
- on yarn(集群模式): 运行在 yarn 资源管理器框架之上,由 yarn 负责资源管理,Spark 负责任务调度和计算
- on mesos(集群模式): 运行在 mesos 资源管理器框架之上,由 mesos 负责资源管理,Spark 负责任务调度和计算
- on cloud(集群模式):比如 AWS 的 EC2,使用这个模式能很方便的访问 Amazon的 S3;Spark 支持多种分布式存储系统:HDFS 和 S3
Spark Standalone集群部署
准备工作
- 这里我下载的是Spark的编译版本,否则需要事先自行编译
- Spark需要Hadoop的HDFS作为持久化层,所以在安装Spark之前需要安装Hadoop,这里Hadoop的安装就不介绍了,给出一个教程Hadoop安装教程_单机/伪分布式配置
- 实现创建hadoop用户,Hadoop、Spark等程序都在该用户下进行安装
- ssh无密码登录,Spark集群中各节点的通信需要通过ssh协议进行,这需要事先进行配置。通过在hadoop用户的
.ssh
目录下将其他用户的id_rsa.pub
公钥文件内容拷贝的本机的authorized_keys
文件中,即可事先无登录通信的功能 - Java环境的安装,同时将JAVA_HOME、CLASSPATH等环境变量放到主目录的
.bashrc
,执行source .bashrc
使之生效
部署配置
这里配置工作需要以下几个步骤:
- 解压Spark二进制压缩包
- 配置conf/spark-env.sh文件
- 配置conf/slave文件
下面具体说明一下:
- 配置Spark的运行环境,将spark-env.sh.template模板文件复制成spark-env.sh,然后填写相应需要的配置内容:
export SPARK_MASTER_IP=hadoop1
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=1
export SPARK_WORDER_INSTANCES=1
export SPARK_WORKER_MEMORY=3g
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 4
- 5
其他选项内容请参照下面的选项说明:
# Options for the daemons used in the standalone deploy mode:
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
conf/slave
文件用户分布式节点的配置,这里只需要在slave文件中写入该节点的主机名即可将以上内容都配置好了,将这个spark目录拷贝到各个节点
scp -r spark Hadoop@hadoop2:~
接下来就可以启动集群了,在Spark目录中执行
sbin/start-all.sh
,然后可以通过netstat -nat
命令查看端口7077的进程,还可以通过浏览器访问hadoop1:8080了解集群的概况
Spark Client部署
Spark Client的作用是,事先搭建起Spark集群,然后再物理机上部署客户端,然后通过该客户端提交任务给Spark集群。
由于上面介绍了Standalone分布式集群是如何搭建的,这里只需将集群上的spark文件夹拷贝过来。
最简单的Spark客户端访问集群的方式就是通过Spark shell的方式:bin/spark-shell --master spark://hadoop1:7077
这样就可以访问集群了。
这样在浏览器的Spark集群界面上就可以看到Running Applications一栏中有Spark shell的应用在执行。
Spark Standalone伪分布式部署
伪分布式是在一台机器上进行部署来模拟分布式的集群,这里部署的过程和Standalone集群的部署是类似的,事前的工作都是一样的,这里只是在配置文件中做相应的修改就可以了。
这里还是配置这两个文件:
配置conf/spark-env.sh文件
配置conf/slave文件
- 修改spark-env.sh文件,修改master的ip,这里主机名和用户ip分别在
/etc/hostname
和/etc/hosts
文件中进行配置
export SPARK_MASTER_IP=jason
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=1
export SPARK_WORDER_INSTANCES=1
export SPARK_WORKER_MEMORY=3g
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 4
- 5
- slave文件中,填写自己的主机名,比如我的主机名jason
转自:http://blog.csdn.net/jasonding1354/article/details/46828315
spark运行模式之二:Spark的Standalone模式安装部署的更多相关文章
- OOAD-设计模式(二)之GRASP模式与GOF设计模式概述
一.GRASP模式(通用责任分配软件模式)概述 1.1.理解责任 1)什么是责任 责任是类间的一种合约或义务,也可以理解成一个业务功能,包括行为.数据.对象的创建等 知道责任——表示知道什么 行为责任 ...
- spark运行时出现Neither spark.yarn.jars nor spark.yarn.archive is set错误的解决办法(图文详解)
不多说,直接上干货! 福利 => 每天都推送 欢迎大家,关注微信扫码并加入我的4个微信公众号: 大数据躺过的坑 Java从入门到架构师 人工智能躺过的坑 ...
- 大话Spark(5)-三图详述Spark Standalone/Client/Cluster运行模式
之前在 大话Spark(2)里讲过Spark Yarn-Client的运行模式,有同学反馈与Cluster模式没有对比, 这里我重新整理了三张图分别看下Standalone,Yarn-Client 和 ...
- Spark集群-Standalone 模式
Spark 集群相关 table td{ width: 15% } 来源于官方, 可以理解为是官方译文, 外加一点自己的理解. 版本是2.4.4 本篇文章涉及到: 集群概述 master, worke ...
- spark运行模式之一:Spark的local模式安装部署
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...
- 【Spark】Spark的Standalone模式安装部署
Spark执行模式 Spark 有非常多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则执行在集群中,眼下能非常好的执行在 Yarn和 Mesos 中.当然 Spark 还有自带的 St ...
- Spark学习之路 (七)Spark 运行流程
一.Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterMan ...
- Spark 运行架构核心总结
摘要: 1.基本术语 2.运行架构 2.1基本架构 2.2运行流程 2.3相关的UML类图 2.4调度模块: 2.4.1作业调度简介 2.4.2任务调度简介 3.运行模式 3.1 standalo ...
- Spark学习之路 (七)Spark 运行流程[转]
Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterManag ...
随机推荐
- 百度地图之标注一组地理坐标<2>
一.需求 开发移动地图相关的应用有时会有这种需求:在地图上显示自己的定位,然后想查看周边使用这个应用的有哪些人.当然完毕这个功能须要后台数据的支持.你要把自己的位置信息发给后台,后台在依据你的位置查询 ...
- [3 Jun 2015 ~ 9 Jun 2015] Deep Learning in arxiv
arXiv is an e-print service in the fields of physics, mathematics, computer science, quantitative bi ...
- DataSource是什么
public interface DataSource 该工厂用于提供到此 DataSource 对象表示的物理数据源的连接.作为 DriverManager(二者区别:http://tobylxy. ...
- windowsclient开发--使你的client执行时记住上次关闭的大小和位置
差点儿全部的windowsclient都能够调整大小,所以用户依据自己的喜好调整client的大小和位置. 可是当该client退出后,又一次执行client的时候.我们往往又要调整自己喜好的大小和位 ...
- hdu 2842(矩阵高速幂+递推)
题意:一个中国环的游戏,规则是一个木棒上有n个环.第一个环是能够任意放上或拆下的,剩下的环x假设想放上或拆下必须前一个环x-1是放上的且前x-2个环所有是拆下的,问n个环最少多少次操作能够所有拆掉. ...
- [单元測试]_[VC2010使用gtest单元測试入门]
场景: 1. gtest作为C++的单元測试工具非常优秀了,它集成了非常多标准assert所没有的功能,比方让流程继续运行的EXPECT,仅仅測试特定測试用例的--gtest_filter, 输出xm ...
- shell grep正则匹配汉字
Shell grep正则匹配中文 测试文本 demo_exe.c,内容如下,需要注意保存的编码格式,对输出到终端有影响: 我们中文操作系统ASNI默认是GBK的. #include<stdio. ...
- Django-content—type
Django包含一个contenttype应用,它可以追踪安装在你的Django项目里的所有的应用,并提供一个高层次的,通用的接口用于与你的模型进行交互 Contenttypes 的核心应用是Cont ...
- 文件另存为——Autocad.doc.SaveAs
一.前言 使用pyautocad编辑好cad图纸后,往往涉及到一个保存的问题,但是官方文档并未提及,所以只能自己来了,测试了好久,终于是找到了保存的命令和参数说明. 二.方法介绍 Autocad.do ...
- linux 块设备驱动(四)——简单的sbull实例
#include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> # ...