HDU 1853 Cyclic Tour[有向环最小权值覆盖]
Cyclic Tour
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)
Total Submission(s): 2399 Accepted Submission(s): 1231
The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
6 5
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
-1
In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.
题意:
给你一个 N 个顶点 M 条边的带权有向图, 要你把该图分成 1 个或多个不相交的有向环. 且所有点都只被一个有向环覆盖.
问你该有向环所有权值的总和最小是多少?(保证有解)
解析:
任意类似的【有向环最小权值覆盖】问题,都可以用最小费用流来写。
由于题目中要求每个点最多走一次,为了防止走多次的发生,我们要把每个点 i 拆成左部点i和右部点i+n两个点。
具体建图如下:
1、S向各点连<1,0>(前者表示容量,后者表示花费)
2、各点向T连<1,0>
3、如果i与j之间有连边,i向j+n连<1,w[i,j]>
最终如果最大流 == n 的话(即满流),那么最小费用就是我们所求,否则输出-1;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
const int M=2e5+;
const int inf=0x3f3f3f3f;
struct edge{int v,cap,cost,next;}e[M<<];int tot=,head[N];
int n,m,cas,ans,res,S,T,dis[N],Prev[N],flow[N],q[N*];
bool vis[N];
void add(int x,int y,int z,int cost){
e[++tot].v=y;e[tot].cap=z;e[tot].cost=cost;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].cost=-cost;e[tot].next=head[y];head[y]=tot;
}
bool spfa(){
for(int i=S;i<=T;i++) vis[i]=,dis[i]=inf;
int h=,t=;q[t]=S;dis[S]=;flow[S]=inf;
while(h!=t){
int x=q[++h];vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]>dis[x]+e[i].cost){
dis[e[i].v]=dis[x]+e[i].cost;
Prev[e[i].v]=i;
flow[e[i].v]=min(flow[x],e[i].cap);
if(!vis[e[i].v]){
vis[e[i].v]=;
if(dis[e[i].v]<dis[x])
q[h--]=e[i].v;
else
q[++t]=e[i].v;
}
}
}
}
return dis[T]!=inf;
}
void augment(){
for(int i=T;i!=S;i=e[Prev[i]^].v){
e[Prev[i]].cap-=flow[T];
e[Prev[i]^].cap+=flow[T];
}
res+=flow[T];
ans+=dis[T]*flow[T];
}
void init(){
res=ans=;tot=;
memset(head,,sizeof head);
}
int main(){
while(scanf("%d%d",&n,&m)==){
init();
S=,T=n<<|;
for(int i=;i<=n;i++) add(S,i,,),add(i+n,T,,);
for(int i=,x,y,w;i<=m;i++) x=read(),y=read(),w=read(),add(x,y+n,,w);;
while(spfa()) augment();
if(res==n) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}
HDU 1853 Cyclic Tour[有向环最小权值覆盖]的更多相关文章
- hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total ...
- HDU 3488 Tour(最小费用流:有向环最小权值覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意: 给出n个点和m条边,每条边有距离,把这n个点分成1个或多个环,且每个点只能在一个环中,保证有解. ...
- Tour HDU - 3488 有向环最小权值覆盖 费用流
http://acm.hdu.edu.cn/showproblem.php?pid=3488 给一个无源汇的,带有边权的有向图 让你找出一个最小的哈密顿回路 可以用KM算法写,但是费用流也行 思路 1 ...
- hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...
- hdu 1853 Cyclic Tour 最小费用最大流
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...
- 【刷题】HDU 1853 Cyclic Tour
Problem Description There are N cities in our country, and M one-way roads connecting them. Now Litt ...
- ZOJ-2342 Roads 二分图最小权值覆盖
题意:给定N个点,M条边,M >= N-1.已知M条边都有一个权值,已知前N-1边能构成一颗N个节点生成树,现问通过修改这些边的权值使得最小生成树为前N条边的最小改动总和为多少? 分析:由于计算 ...
- HDU 1853 Cyclic Tour(最小费用最大流)
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others) Tota ...
- 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour
题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...
随机推荐
- HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】
I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...
- Network | CIDR
无类别(现在) 无类别域间路由(Classless Inter-Domain Routing.CIDR)是一个用于给用户分配IP地址以及在互联网上有效地路由IP数据包的对IP地址进行归类的方法. CI ...
- Network | 协议栈
因特网协议栈Internet protocol stack: 应用层Application layer.运输层Transport layer.网络层Network layer.链路层Data link ...
- Xamarin XAML语言教程将XAML设计的UI显示到界面
Xamarin XAML语言教程将XAML设计的UI显示到界面 如果通过XAML将UI设计好以后,就可以将XAML中的内容显示给用户了,也就是显示到界面上.由于创建XAML文件方式的不同,所以将XAM ...
- luogu P1489 猫狗大战
题目描述 新一年度的猫狗大战通过SC(星际争霸)这款经典的游戏来较量,野猫和飞狗这对冤家为此已经准备好久了,为了使战争更有难度和戏剧性,双方约定只能选择Terran(人族)并且只能造机枪兵. 比赛开始 ...
- javascript中各种继承方式的优缺点
javascript中实现继承的方式有很多种,一般都是通过原型链和构造函数来实现.下面对各种实现方式进行分析,总结各自的优缺点. 一 原型继承 let Super = functioin(name = ...
- #译# Core Data概述 (转)
昨晚熬夜看发布会(本以为屌丝终于能买得起苹果了,谁知道...),因为看不了视频直播,所以就正好有空就把www.objc.io最新的一篇文章翻译了一下,同时感谢CocoaChina翻译组提供校对,以下为 ...
- FTP经典常用命令
FTP命令是Internet用户使用最频繁的命令之一,不论是在DOS还是UNIX操作系统下使用FTP,都会遇到大量的FTP内部命令. 熟悉并灵活应用FTP的内部命令,可以大大方便使用者,并收到事半功倍 ...
- 一入python深似海--range()、list与for
range使用方法 使用python的人都知道range()函数非常方便,今天再用到他的时候发现了非常多曾经看到过可是忘记的细节. 这里记录一下: range(1,5)#代表从1到5(不包括5) [1 ...
- YOLO+yolo9000配置使用darknet
Installing Darknet 1.直接设置使用,编译通过 git clone https://github.com/pjreddie/darknet.git cd darknet make 2 ...