很妙的贪心思考过程

Description

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

Input

第一行一个正整数nn<=1'000'000,表示小朋友的个数.
接下来n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数.

Output

求使所有人获得均等糖果的最小代价。

Sample Input

4
1
2
5
4

Sample Output

4

题目分析

注意到传递糖果时候传递给不相邻的人是不优的,但是如何决策传给相邻人多少糖果呢?

首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave  ->  X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave  ->  X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2
对于第3个小朋友,A3-X3+X4=ave  ->  X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
……
对于第n个小朋友,An-Xn+X1=ave。
  我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。
 
 
----from hzwer

话说这题暴力好难打啊……

 #include<bits/stdc++.h>
const int maxn = ; int a[maxn],n,mid;
long long m,ans; int main()
{
scanf("%d",&n);
for (int i=; i<=n; i++) scanf("%d",&a[i]), m += a[i];
m /= n;
for (int i=; i<=n; i++) a[i] += a[i-]-m;
std::nth_element(a+, a+n/+, a+n+);
mid = a[n/+];
for (int i=; i<=n; i++)
ans += abs(a[i]-mid);
printf("%lld\n",ans);
return ;
}

END

【贪心】bzoj1045: [HAOI2008] 糖果传递的更多相关文章

  1. bzoj1045: [HAOI2008] 糖果传递(数论)

    1045: [HAOI2008] 糖果传递 题目:传送门(双倍经验3293) 题解: 一开始想着DP贪心一顿乱搞,结果就GG了 十分感谢hzwer大佬写的毒瘤数论题解: 首先,最终每个小朋友的糖果数量 ...

  2. bzoj3293 [Cqoi2011]分金币&&bzoj1045 [HAOI2008]糖果传递

    Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...

  3. [BZOJ1045] [HAOI2008] 糖果传递 (贪心)

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=,表示小朋友的个数.接下来n行,每行 ...

  4. BZOJ1045 HAOI2008糖果传递(贪心)

    显然最后每个小朋友所拥有的糖果数就是糖果数总和的平均数.设该平均数为t. 环的问题一般断成链,但这个题似乎没有什么很好的办法在枚举断点的时候快速算出答案(我甚至不知道会不会有断点) 于是我们假装把他断 ...

  5. BZOJ1045 [HAOI2008] 糖果传递

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=987654321,表示小朋友的个数 ...

  6. [BZOJ1045][HAOI2008]糖果传递 (环形均分纸牌)

    题意 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. 思路 把|s[i]-s[k]|求和即可,s[i]是A的前缀和 s[k]为s数组的中位数时,总值 ...

  7. BZOJ1045 [HAOI2008]糖果传递 && BZOJ3293 [Cqoi2011]分金币

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数nn<=1'000'000,表示小朋友的个 ...

  8. [BZOJ1045][HAOI2008]糖果传递 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1045 我们假设每一个小朋友的代价为$x[i]$,每一次都从前面一个小朋友那里拿,这种贪心跟 ...

  9. bzoj1045: [HAOI2008] 糖果传递(思维题)

    首先每个人一定分到的糖果都是所有糖果的平均数ave. 设第i个人给i-1个人Xi个糖果,则有Ai-Xi+X(i+1)=ave. 则A1-X1+X2=ave,A2-X2+X3=ave,A3-X3+X4= ...

随机推荐

  1. seq(2018.10.24)

    一道\(dp\)题... 期望\(40\)分解法 预处理:离散化,然后让连续一段值相同的元素合并为一个元素. 正式\(DP\): 显然有个最差策略为每个元素处都切一次,则切的次数为元素的个数\(-1\ ...

  2. Codeforces Round #541 (Div. 2) B.Draw!

    链接:https://codeforces.com/contest/1131/problem/B 题意: 给n次足球比分,求存在平局的机会. 思路: 结构体存储,unique后,判断是否有分数交叉. ...

  3. Dubbo理论知识

    本文是作者根据官方文档以及自己平时的使用情况,对 Dubbo 所做的一个总结.如果不懂 Dubbo 的使用的话,可以参考我的这篇文章<超详细,新手都能看懂 !使用SpringBoot+Dubbo ...

  4. elasticsearch的模糊查询

    https://blog.csdn.net/a772304419/article/details/78951561

  5. Nginx 配置https 开启ssl 同时支持http

    server { listen ; listen 443 ssl; server_name default; index index.html index.php; root /www/html; a ...

  6. 一文带你读懂 Mysql 和 InnoDB存储引擎

    作为一名开发人员,在日常的工作中会难以避免地接触到数据库,无论是基于文件的 sqlite 还是工程上使用非常广泛的 MySQL.PostgreSQL,但是一直以来也没有对数据库有一个非常清晰并且成体系 ...

  7. js对象引用赋值后

    a={f:1} b={} b.a=a console.log(b.a) a.b=2 console.log(b.a) a={f:1} b={} b.a=a console.log(b.a) a={b: ...

  8. Webservice相关的知识

    一.利用jdk web服务api实现,这里使用基于 SOAP message 的 Web 服务 1.首先建立一个Web services EndPoint: package Hello; import ...

  9. Scrapy框架的基本组成及功能使用

    1.什么是scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架.框架的本质就是集成各种功能.具有很强通用性的项目模板. 2.安装 Linux:       pip3 in ...

  10. Django2.0路由补充之path,re_path及视图层

    以下是Django2.0版本 正则捕获到的参数都是字符串,所以如果函数需要用的其他数据类型,可以在函数中直接转换,也可以在路由中直接转换,如下: 下面实例是匹配整数,传过去的参数就是整数 from d ...