Description

In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?
 

Input

There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

 

Output

For each case, output a n,m mod 10000007.
 

Sample Input

1 1
1
2 2
0 0
3 7
23 47 16
 

Sample Output

234
2799
72937

Hint

这个题目由于m数据范围很大,故不能直接暴力计算。此处采用矩阵乘法,由矩阵乘法可以由每一列得到下一列。然后矩阵的乘法使用快速幂加快计算。

由2333可以由233乘10加3,于是打算构造n+2行的方阵。

大致如下:

10 0 0 0 ……0 1

10 1 0 0 ……0 1

10 1 1 0 ……0 1

……

10 1 1 1 ……1 1

0   0 0 0 ……0 1

而所要求的列矩阵大致如下:

23……3

a 1,0

a 2,0

……

a n,0

3

递推的正确性可以通过计算验证

此处矩阵通过结构体,运算符重载完成。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 10000007
#define LL long long using namespace std; struct Mat
{
LL val[15][15];
int len; Mat operator = (const Mat& a)
{
for (int i = 0; i < len; ++i)
for (int j = 0; j < len; ++j)
val[i][j] = a.val[i][j];
len = a.len;
return *this;
} Mat operator * (const Mat& a)
{
Mat x;
memset(x.val, 0, sizeof(x.val));
x.len = len;
for (int i = 0; i < len; ++i)
for (int j = 0; j < len; ++j)
for (int k = 0; k < len; ++k)
if (val[i][k] && a.val[k][j])
x.val[i][j] = (x.val[i][j] + (val[i][k]*a.val[k][j])%N)%N;
return x;
} Mat operator ^ (const int& a)
{
int n = a;
Mat x, p = *this;
memset(x.val, 0, sizeof(x.val));
x.len = len;
for (int i = 0; i < len; ++i)
x.val[i][i] = 1;
while (n)
{
if (n & 1)
x = x * p;
p = p * p;
n >>= 1;
}
return x;
}
}; int n, m;
LL a[15], ans; void Make(Mat &p)
{
p.len = n + 2;
memset(p.val, 0, sizeof(p.val));
for (int i = 0; i <= n; ++i)
p.val[i][0] = 10;
for (int i = 0; i <= n+1; ++i)
p.val[i][n+1] = 1;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j)
p.val[i][j] = 1;
} int main()
{
//freopen("test.txt", "r", stdin);
while (scanf("%d%d", &n, &m) != EOF)
{
Mat p;
Make(p);
p = p ^ m;
a[0] = 23;
a[n+1] = 3;
for (int i = 1; i <= n; ++i)
scanf("%I64d", &a[i]);
ans = 0;
for (int i = 0; i <= n+1; ++i)
ans = (ans + (p.val[n][i]*a[i])%N)%N;
printf("%I64d\n", ans);
}
return 0;
}

ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)的更多相关文章

  1. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  2. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  3. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  4. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  6. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  7. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  8. ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)

    Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...

  9. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

随机推荐

  1. SQLite 数据库安装与创建数据库

    嵌入式关系数据库 Ubuntu $ sudo apt-get install sqlite3 sqlite3-dev CentOS, or Fedora $ yum install SQLite3 s ...

  2. 【转】cmd chcp命令切换字符格式

    cmd chcp命令切换字符格式   命令介绍:   chcp 65001   #换成utf-8代码页   chcp 936       #换成默认的gbk   chcp 437       #美国英 ...

  3. C# Array类的浅复制Clone()与Copy()的差别

    1 Array.Clone方法 命名空间:System 程序集:mscorlib 语法: public Object Clone() Array的浅表副本仅复制Array的元素,不管他们是引用类型还是 ...

  4. 漫反射和Lambert模型

    粗糙的物体表面向各个方向等强度地反射光,这种等同地向各个方向散射的现象称为光的漫反射(diffuse reflection).产生光的漫反射现象的物体表面称为理想漫反射体,也称为朗伯(Lambert) ...

  5. struts2 jsp提交日期类型转换及国际化实现

    概述:下面通过jsp提交输入注册信息信息,同时完成过程文件国家化问题演示说明.[注册日期转换用注解方式实现] 工程截图: 注册页面jsp文件: <%@ page language="j ...

  6. spring AOP(切面)

    AOP 基本概念cross  cutting concern横切性关注点:独立服务,遍布在系统处理流程之中 Aspect对横切关注点模块化 advice对横切关注点具体实现 pointcut定义adv ...

  7. linux 时间格式

    版权为个人所有,欢迎转载如转载请说明出处.(东北大亨) http://www.cnblogs.com/northeastTycoon/p/5511718.html 时间域 % H 小时(00..23) ...

  8. UIScrollView奇葩不滑动

    首先要说声尼玛,真奇葩,从来都没有遇到过这个问题,首先描述一下背景: 我是用XIB拖拽了一个UIScrollView在View上,然后设置了frame,在ViewDidLoad里面,设置了scroll ...

  9. java中Random(long seed)方法与rRandom()方法的使用产生随机数

    Random 类作为JAVA中用于产生的随机数 ,new  Random(10)  :10是种子数. 注意:Random 的一个特点是:相同种子数的Random对象,对应相同次数生成的随机数字是完全相 ...

  10. 马尔科夫链在第n步转移的状态的概率分布