CDH5.12.1 安装部署
###通过http://192.168.50.200:7180/cmf/login 访问CM控制台
4.CDH安装
4.1CDH集群安装向导
1.admin/admin登陆到CM
2.同意license协议,点击继续
3.选择60试用,点击继续
4.点击“继续”
5.输入主机IP或者名称,点击搜索找到主机名后点击继续
6.点击“继续”
7.使用parcel选项,点击“更多选项”,点击“-”删除其他所有的地址,输入http://ip-192-168-50-200.hns.com/cdh5.12.1/点击“保存更改”
8.选择自定义存储库,输入cm的http地址
9.点击“继续”,进入下一步安装jdk
10.点击“继续”,进入下一步,默认多用户模式
11.点击“继续”,进入下一步配置ssh账号密码:
12.点击“继续”,进入下一步,安装Cloudera Manager相关到各个节点
13.点击“继续”,进入下一步安装cdh到各个节点
14.点击“继续”,进入下一步主机检查,确保所有检查项均通过
上述的解决方案:
在每台机器上执行如下操作:
[root@ip-192-168-50-200 ~]# echo never > /sys/kernel/mm/transparent_hugepage/enabled
[root@ip-192-168-50-200 ~]# echo never > /sys/kernel/mm/transparent_hugepage/defrag
[root@ip-192-168-50-200 ~]# echo "vm.swappiness = 10" >> /etc/sysctl.conf
[root@ip-192-168-50-200 ~]# sysctl -p
点击完成进入服务安装向导!!!
4.2 集群设置安装向导
1.选择需要安装的服务,此处使用自定义服务,如下图
2.点击“继续”,进入集群角色分配
HDFS角色分配:
Hive角色分配:
Cloudera Manager Service 角色分配:
Spark角色分配:(Spark on Yarn 所以没有spark的master和worker 角色)
Yarn角色分配:
Zookeeper角色分配:(至少3个Server)
3.角色分配完成点击“继续”,进入下一步,测试数据库连接
4.测试成功,点击“继续”,进入目录设置,此处使用默认默认目录,根据实际情况进行目录修改
5.点击“继续”,等待服务启动成功!!!
6.点击“继续”,显示集群安装成功!
7.安装成功后,进入home管理界面
5.快速组建服务验证
5.1HDFS验证(mkdir+put+cat +get)
mkdir操作:
put 操作:
cat 操作:
get 操作:
5.2 Hive 验证
使用hive命令行操作
hive> create external table test_table(
> s1 string,
> s2 string
> )row format delimited fields terminated by ','
> stored as textfile location '/hns/test';
OK
Time taken: 0.074 seconds
hive> show tables;
OK
test_table
Time taken: 0.012 seconds, Fetched: row(s)
hive> select * from test_table;
OK
1 test
2 hns
3 zhangsan
Time taken: 0.054 seconds, Fetched: 3 row(s)
hive>
hive> insert into test_table values("","lisi");
Query ID = hdfs_20181013220202_823a17d7-fb58-40e9-bf33-11f44d0de10a
Total jobs =
Launching Job out of
Number of reduce tasks is set to since there's no reduce operator
Starting Job = job_1539418452562_0003, Tracking URL = http://ip-192-168-50-200.hns.com:8088/proxy/application_1539418452562_0003/
Kill Command = /opt/cloudera/parcels/CDH-5.12.-.cdh5.12.1.p0./lib/hadoop/bin/hadoop job -kill job_1539418452562_0003
Hadoop job information for Stage-: number of mappers: ; number of reducers:
-- ::, Stage- map = %, reduce = %
-- ::, Stage- map = %, reduce = %, Cumulative CPU 0.93 sec
MapReduce Total cumulative CPU time: msec
Ended Job = job_1539418452562_0003
Stage- is selected by condition resolver.
Stage- is filtered out by condition resolver.
Stage- is filtered out by condition resolver.
Moving data to: hdfs://ip-192-168-50-200.hns.com:8020/hns/test/.hive-staging_hive_2018-10-13_22-02-31_572_2687237229927791201-1/-ext-10000
Loading data to table default.test_table
Table default.test_table stats: [numFiles=, numRows=, totalSize=, rawDataSize=]
MapReduce Jobs Launched:
Stage-Stage-: Map: Cumulative CPU: 0.93 sec HDFS Read: HDFS Write: SUCCESS
Total MapReduce CPU Time Spent: msec
OK
Time taken: 19.016 seconds
hive> select * from test_table;
OK
lisi
test
hns
zhangsan
Time taken: 0.121 seconds, Fetched: row(s)
hive>
Hive MapReduce操作:
hive> select count(*) from test_table;
Query ID = hdfs_20181013220606_1011d0ce-9ddd-43ec-a103-18b3a32ea292
Total jobs =
Launching Job out of
Number of reduce tasks determined at compile time:
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1539418452562_0004, Tracking URL = http://ip-192-168-50-200.hns.com:8088/proxy/application_1539418452562_0004/
Kill Command = /opt/cloudera/parcels/CDH-5.12.-.cdh5.12.1.p0./lib/hadoop/bin/hadoop job -kill job_1539418452562_0004
Hadoop job information for Stage-: number of mappers: ; number of reducers:
-- ::, Stage- map = %, reduce = %
-- ::, Stage- map = %, reduce = %, Cumulative CPU 1.12 sec
-- ::, Stage- map = %, reduce = %, Cumulative CPU 2.28 sec
MapReduce Total cumulative CPU time: seconds msec
Ended Job = job_1539418452562_0004
MapReduce Jobs Launched:
Stage-Stage-: Map: Reduce: Cumulative CPU: 2.28 sec HDFS Read: HDFS Write: SUCCESS
Total MapReduce CPU Time Spent: seconds msec
OK Time taken: 24.471 seconds, Fetched: row(s)
5.3 MapReduce 验证:
[hdfs@ip---- hadoop-mapreduce]$ pwd
/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce
[hdfs@ip---- hadoop-mapreduce]$ hadoop jar hadoop-mapreduce-examples.jar pi
Number of Maps =
Samples per Map =
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Starting Job
.
.
.
// :: INFO mapreduce.Job: Running job: job_1539418452562_0005
// :: INFO mapreduce.Job: Job job_1539418452562_0005 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1539418452562_0005 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
.
.
.
5.4 Spark 验证
scala> val testFile=sc.textFile("hdfs://ip-192-168-50-200.hns.com:8020/hns/test/a.txt")
testFile: org.apache.spark.rdd.RDD[String] = hdfs://ip-192-168-50-200.hns.com:8020/hns/test/a.txt MapPartitionsRDD[1] at textFile at <console>:27
scala> testFile.count()
res2: Long =
CDH5.12.1 安装部署的更多相关文章
- CDH-5.12.2安装教程
CDH是Cloudera公司提供的Hadoop发行版,它在原生开源的Apache Hadoop基础之上,针对特定版本的Hadoop以及Hadoop相关的软件,如Zookeeper.HBase.Flum ...
- CentOS7安装CDH 第六章:CDH的管理-CDH5.12
相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...
- rabbitmq安装部署
本文主要介绍rabbitmq-server-3.6.12的安装部署 # 检查是否已经安装旧版本的软件 rpm -qa|grep erlang rpm -qa|grep rabbitmq # 如果之前 ...
- 【Spark学习】Spark 1.1.0 with CDH5.2 安装部署
[时间]2014年11月18日 [平台]Centos 6.5 [工具]scp [软件]jdk-7u67-linux-x64.rpm spark-worker-1.1.0+cdh5.2.0+56-1.c ...
- CENTOS6.5安装CDH5.12.1(一) https://mp.weixin.qq.com/s/AP_m0QqKgzEUfjf0PQCX-w
CENTOS6.5安装CDH5.12.1(一) 原创: Fayson Hadoop实操 2017-09-13 温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看. 1.概述 本文档主要描 ...
- 在Ubuntu 12.10 上安装部署Openstack
OpenStack系统有几个关键的项目,它们能够独立地安装但是能够在你的云计算中共同工作.这些项目包括:OpenStack Compute,OpenStack Object Storage,OpenS ...
- 阿里云三台CentOS7.2配置安装CDH5.12
1 购买3台阿里云服务 2 配置好ssh连接客户端 根据自己情况连接 3 安装好MySQL5.7 跳过,见之前博客 安装在hadoop001上 4 设置好Hosts文件 3台机器同时操作 vim /e ...
- Linux平台Oracle 12.1.0.2 单实例安装部署
主题:Linux平台Oracle 12.1.0.2 单实例安装部署 环境:RHEL 6.5 + Oracle 12.1.0.2 需求:安装部署OEM 13.2需要Oracle 12.1.0.2版本作为 ...
- 1.安装CDH5.12.x
安装方式安装前准备安装步骤安装过程修改/etc/hosts设置ssh 互信修改linux 系统设置安装JDK1.8安装python2.7安装mysql/postgreysql数据库安装ntp设置本地y ...
随机推荐
- IOS 网络解析
网络解析同步异步 /*------------------------get同步-------------------------------------*/ - (IBAction)GET_TB:( ...
- Flash威胁的不不过浏览器
Adobe为提升Flash的安全性.在最新版本号的Flash(18.0.0.209)增加了很多攻击缓解技术. 新的攻击缓解技术为: l <*>长度验证–添加长度cookie到Vector ...
- OpenCV 中的三大数据类型( 概述 )
前言 OpenCV 提供了许多封装好了的类型,而其中,以三大类型最为核心.本文将大致介绍这三大类型. CvArr:不确定数组 它可以被视为一个抽象基类,后面的两大类型都继承此类型并扩展.只要某个函数的 ...
- 输出 pdf
jar 包 :core-renderer.jar iText-2.0.8.jar iTextAsian.jar 方式1: import java.io.FileNotFoundException ...
- 2015年多校联合训练第一场OO’s Sequence(hdu5288)
题意:给定一个长度为n的序列,规定f(l,r)是对于l,r范围内的某个数字a[i],都不能找到一个相应的j使得a[i]%a[j]=0.那么l,r内有多少个i,f(l,r)就是几. 问全部f(l,r)的 ...
- 安装Redis 非结构化数据库
1.官网下载安装包 1) 首先在Redis官网下载安装包: http://redis.io/download(redis-4.0.9.tar.gz) 2.在/usr/local/创建一个redi ...
- spring事务和mysql的隔离级别
mysql事务.mysql隔离级别.mysql锁.mysql数据一致性.Spring事务.Spring事务传播性之间的关系 一直有些模糊,整理一下. mysql事务: 在mysql中,只有使用了I ...
- gulp的使用方法
---恢复内容开始--- 什么是gulp? Gulp.js是一个自动化构建工具,开发者可以使用它在项目开发过程中自动执行常见任务. 使用步骤: 1.全局安装gulp: npm install - ...
- MySQL基于二进制日志的主从复制
一.什么是MySQL的主从复制? MySQL可以将一个数据库设置为主库,另一个数据库设置为该主库的从库,当主库发生了变更,会同步到从库中.MySQL的主从架构,可以是星型的,也可以是线型的. 星型架构 ...
- iOS define 宏定义 和 const定义常量区别
const const 是c++中的修饰符. c++中常用来定义常量,修饰左值. #define 宏定义语句, 在预处理阶段直接做文本替换,不做类型检查. 它们之间的最大区别: 1. 对于co ...