题目描述

小呆开始研究集合论了,他提出了关于一个数集四个问题:
1.子集的异或和的算术和。
2.子集的异或和的异或和。
3.子集的算术和的算术和。
4.子集的算术和的异或和。
目前为止,小呆已经解决了前三个问题,还剩下最后一个问题还没有解决,他决定把这个问题交给你,未来的集训队队员来实现。

输入

第一行,一个整数n。
第二行,n个正整数,表示01,a2….,。

输出

一行,包含一个整数,表示所有子集和的异或和。

样例输入

2
1 3

样例输出

6


题解

背包dp+STL-bitset

首先想想暴力怎么做?设f[i]表示i出现在算术和中的次数,那么对于a[j],有f[i]+=f[i-a[j]]。最后统计哪些数出现了奇数次即可。

那么怎么优化这个暴力?我们其实不需要知道某个数出现的具体次数,只需要知道它出现次数的奇偶性即可。

所以我们可以使用bitset压位来解决。

具体实现还是比较简单的,直接位运算然后异或即可。

  1. #include <cstdio>
  2. #include <bitset>
  3. using namespace std;
  4. bitset<2000010> f;
  5. int main()
  6. {
  7. int n , i , x , m = 0 , ans = 0;
  8. scanf("%d" , &n);
  9. f[0] = 1;
  10. for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , f ^= (f << x) , m += x;
  11. for(i = 1 ; i <= m ; i ++ ) if(f[i]) ans ^= i;
  12. printf("%d\n" , ans);
  13. return 0;
  14. }

【bzoj3687】简单题 背包dp+STL-bitset的更多相关文章

  1. BZOJ3687 简单题 【bitset】

    BZOJ3687 简单题 Description 小呆开始研究集合论了,他提出了关于一个数集四个问题: 1.子集的异或和的算术和. 2.子集的异或和的异或和. 3.子集的算术和的算术和. 4.子集的算 ...

  2. bzoj3687简单题*

    bzoj3687简单题 题意: 给个集合,求所有子集的元素和的异或和.集合元素个数≤1000,整个集合的元素和≤2000000 题解: 用bitset维护每个子集元素和的个数是奇数还是偶数.每次读入一 ...

  3. 【BZOJ3687】简单题 背包+bitset

    [BZOJ3687]简单题 Description 小呆开始研究集合论了,他提出了关于一个数集四个问题:1.子集的异或和的算术和.2.子集的异或和的异或和.3.子集的算术和的算术和.4.子集的算术和的 ...

  4. bzoj3687简单题(dp+bitset优化)

    3687: 简单题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 861  Solved: 399[Submit][Status][Discuss] ...

  5. [Bzoj3687]简单题(bitset)

    3687: 简单题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1150  Solved: 565[Submit][Status][Discuss] ...

  6. BZOJ3687: 简单题(dp+bitset)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1138  Solved: 556[Submit][Status][Discuss] Descripti ...

  7. 算法复习——bitset(bzoj3687简单题)

    题目: Description 小呆开始研究集合论了,他提出了关于一个数集四个问题:1.子集的异或和的算术和.2.子集的异或和的异或和.3.子集的算术和的算术和.4.子集的算术和的异或和.    目前 ...

  8. 「bzoj3687: 简单题」

    题目 发现需要一个\(O(n\sum a_i )\)的做法 于是可以直接做一个背包,\(dp[i]\)表示和为\(i\)的子集是否有奇数种 \(bitset\)优化一下就好了 #include< ...

  9. BZOJ3687: 简单题

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3687 小呆开始研究集合论了,他提出了关于一个数集四个问题: 1.子集的异或和的算术和. 2.子 ...

随机推荐

  1. windows下安装php依赖关系管理工具composer

    1.安装Composer Composer是PHP的依赖管理工具之一,官方网站 http://getcomposer.org/ .它支持多种安装方式,对于在win下做开发的草来说,最便捷的方式就是下载 ...

  2. preprocessing MinMaxScaler

    import numpy as npfrom sklearn.preprocessing import MinMaxScalerdataset = np.array([1,2,3,5]).astype ...

  3. 方法 -------JavaScript

    本文摘要:http://www.liaoxuefeng.com/ 在一个对象中绑定函数,称为这个对象的方法. 在JavaScript的中,对象的定义是这样的: var xiaoming = { nam ...

  4. mbstring未安装

    yum install php55w-mbstring.x86_64 把php版本换成自己的就ok

  5. SpringBoot之YAML

    SpringBoot的配置文件有两种,一种是properties结尾的,一种是以yaml或yml文件结尾的 我们讨论一下yml文件结尾的文件: 基本语法: 其实yml文件就是键值对的形式,不过就是键( ...

  6. (83)zabbix Less than 25% free in the configuration cache解决

    在zabbix server默认配置下,出现告警:Less than 25% free in the configuration cache,字面意思是:可用的配置缓存少于25%. 报错如下图: 增加 ...

  7. thinkphp3.2.3如何只改变地址url中的某一个分隔符,其它保持不变

    今天教大家一个关于使用thinkphp3.2.3改变只改变地址url中的某一个分隔符的方法,首先大家来看看这个地址! 它的原始地址应该是/Home/Index/index/page/2.html,那我 ...

  8. 10.VUE学习之使用lodash库减少watch对后台请求的压力

    问题描述 使用watch监听库里word的值的变化,获取新值后,用oxios发送的ajax异步请求, 此时会多次发送请求,浪费服务器资料. 解决办法 使用lodash库里的_.debounce函数延缓 ...

  9. kali下将Python2.x切换至Python3.x

    注:我是将Python2切换到Python3.6版本的,下面文件夹名,请注意变更. 1.首先在/usr/local/下创建一个Python-3.6 注意文件夹名(根建议据自己安装版本命名)mkdir ...

  10. A1025 PAT Ranking (25)(25 分)

    A1025 PAT Ranking (25)(25 分) Programming Ability Test (PAT) is organized by the College of Computer ...