今天带来一个简单的线性结构上的DP,与上次的照明系统(UVA11400)是同一种类型题,便于大家类比、总结、理解,但难度上降低了。

We say a sequence of characters is a palindrome if it is the same written forwards and backwards. For example, ‘racecar’ is a palindrome, but ‘fastcar’ is not. A partition of a sequence of characters is a list of one or more disjoint non-empty groups of consecutive characters whose concatenation yields the initial sequence. For example, (‘race’, ‘car’) is a partition of ‘racecar’ into two groups. Given a sequence of characters, we can always create a partition of these characters such that each group in the partition is a palindrome!

正序倒序写都相同的字符串我们称之为回文串。例如,‘racecar’就是回文的,‘fastcar’就不是。对一个字符序列的划分即:分成一堆(至少一个)非空不相交的连续字符串,使它们连起来就是原来的字符序列。例如,‘race’,‘car’就是把‘racecar’划分成两组。给定一个字符串,我们总能找到一种划分使得每个子串都是回文串!(大不了一个字母算一个子串)

Given this observation it is natural to ask: what is the minimum number of groups needed for a given string such that every group is a palindrome?
For example:

• ‘racecar’ is already a palindrome, therefore it can be partitioned into one group.

• ‘fastcar’ does not contain any non-trivial palindromes, so it must be partitioned as (‘f’, ‘a’, ‘s’, ‘t’, ‘c’, ‘a’, ‘r’).

• ‘aaadbccb’ can be partitioned as (‘aaa’, ‘d’, ‘bccb’).

求:使得每个子串都是回文串的最小划分组数。

例如,‘racecar’本身就是个回文串所以它的答案是1组;‘fastcar’不含回文子串,只能一个字母一个字母地分,答案为7组;‘aaadbccb’最优可以分成‘aaa’,‘d’,‘bccb’3组。

Input
Input begins with the number n of test cases. Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within..

最先输入测试组数n。每组给出一个长度1~1000的小写字母串,中间没有空格。

Output
For each test case, output a line containing the minimum number of groups required to partition the input into groups of palindromes.

对于每组测试,输出可划分的最少组数。

Sample Input
3

racecar

fastcar

aaadbccb

Sample Output
1

7

3

思路:

假如我遍历一遍字符串 ----> 强如‘fastcar’的话只能一个字母一个字母地苦逼+1,那么有回文子串时,差异是如何产生的呢? ----> 就说racecar吧。走到race的时候还是+1模式,再走一步到c的时候发现跟前面的ce能凑个cec ----> 我们用dp数组表示结果,dp[racec]本来等于dp[race]+1,由于找到了回文子串cec,所以变成了min( dp[race]+1, dp[ra]+1 ) ----> 由于我们不知道当前字母最早可以伸展到哪里去跟别人结合为回文子串,所以可以暴力扫一遍前面的 ----> 至于回文串,一边扫一遍判断也可以,预处理也可以,关键是复杂度。预处理可以枚举回文串中心然后向左右伸展得到(j,i)是不是回文串,可以以n²的复杂度求解,这样dp的过程也是n²。一边dp一边判断大概是n³的复杂度,我不知道怎么就过了我复杂度算错了?……

最开始瞎写的代码1:20ms

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; int T;
int dp[];
char str[]; bool ispalindrome(int start, int end)
{
for (int i = start; i < (start+end+)/; i++)
if (str[i] != str[start+end-i])
return false;
return true;
} int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%s", str+); int len = strlen(str+);
for (int i = ; i <= len; i++)
{
dp[i] = dp[i-] + ;
for (int j = ; j <= i-; j++)
if (ispalindrome(j, i))//[j,i]是不是回文
dp[i] = min(dp[i], dp[j-] + );
} printf("%d\n", dp[len]);
}
}

按照上面瞎改的代码2:20ms

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; int T;
int dp[];
char str[];
bool ispalindrome[][]; int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%s", str+); int len = strlen(str+);
memset(ispalindrome, false, sizeof(ispalindrome));
memset(dp, 0x3f, sizeof(dp)); for (int i = ; i <= len; i++)
{
for (int l = i, r = i; str[l] == str[r] && l >= && r <= len; l--, r++)
ispalindrome[l][r] = true;
for (int l = i, r = i+; str[l] == str[r] && l >= && r <= len; l--, r++)
ispalindrome[l][r] = true;
} dp[] = ;
for (int i = ; i <= len; i++)
for (int j = ; j <= i; j++)
if (ispalindrome[j][i])//[j,i]是不是回文
dp[i] = min(dp[i], dp[j-] + ); printf("%d\n", dp[len]);
}
}

UVA-11584:Partitioning by Palindromes(基础DP)的更多相关文章

  1. uva 11584 Partitioning by Palindromes 线性dp

    // uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...

  2. UVA - 11584 Partitioning by Palindromes[序列DP]

    UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...

  3. UVa 11584 Partitioning by Palindromes【DP】

    题意:给出一个字符串,问最少能够划分成多少个回文串 dp[i]表示以第i个字母结束最少能够划分成的回文串的个数 dp[i]=min(dp[i],dp[j]+1)(如果从第j个字母到第i个字母是回文串) ...

  4. UVa 11584 Partitioning by Palindromes (简单DP)

    题意:给定一个字符串,求出它最少可分成几个回文串. 析:dp[i] 表示前 i 个字符最少可分成几个回文串,dp[i] = min{ 1 + dp[j-1] | j-i是回文}. 代码如下: #pra ...

  5. UVA 11584 "Partitioning by Palindromes"(DP+Manacher)

    传送门 •题意 •思路一 定义 dp[i] 表示 0~i 的最少划分数: 首先,用马拉车算法求解出回文半径数组: 对于第 i 个字符 si,遍历 j (0 ≤ j < i),判断以 j 为回文中 ...

  6. 区间DP UVA 11584 Partitioning by Palindromes

    题目传送门 /* 题意:给一个字符串,划分成尽量少的回文串 区间DP:状态转移方程:dp[i] = min (dp[i], dp[j-1] + 1); dp[i] 表示前i个字符划分的最少回文串, 如 ...

  7. UVA 11584 - Partitioning by Palindromes DP

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. UVA 11584 Partitioning by Palindromes (字符串区间dp)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  9. UVa 11584 - Partitioning by Palindromes(线性DP + 预处理)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  10. UVA - 11584 Partitioning by Palindromes(划分成回文串)(dp)

    题意:输入一个由小写字母组成的字符串,你的任务是把它划分成尽量少的回文串,字符串长度不超过1000. 分析: 1.dp[i]为字符0~i划分成的最小回文串的个数. 2.dp[j] = Min(dp[j ...

随机推荐

  1. ARM编译器中预定义的宏

    arm系列目前支持三大主流的工具链,realview的armcc,iar ewarm的iccarm,gnu的gcc,编译器在编译的时候会预定义一些宏,这些宏在工程中起到不可或缺的作用. 例如 /* d ...

  2. HDU5965 扫雷 —— dp递推

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5965 题解: 1. 用a[]数组记录第二行的数字,用dp[]记录没一列放的地雷数.如果第一列的地雷数d ...

  3. WebDriver API——延时操作及元素等待

    在自动化测试过程当中,受网络.测试设备等诸多因素的影响,我们经常需要在自动化测试脚本中添加一些延时来更好的定位元素来进行一系列的操作. 一般有这么几种方式: 1.implicitlyWait.识别对象 ...

  4. 用 Java 抓取优酷、土豆等视频

    1. [代码][JavaScript]代码  import org.jsoup.Jsoup;import org.jsoup.nodes.Document;import org.jsoup.nodes ...

  5. html5--5-2 绘制直线

    html5--5-2 绘制直线 学习要点 如何在HTML5文档中添加canvas元素 canvas的属性 了解canvas坐标系 了解script元素 绘制一条直线(准确的说是线段) 什么是canva ...

  6. (转)vim 访问系统剪贴板

    原文出处:http://vim.wikia.com/wiki/Accessing_the_system_clipboard Please review this tip: This tip was i ...

  7. WinDbg 调试工具的使用

    概述 项目接近尾声了,可是在运行时会有memory leak(内存泄露) bug.产品在运行一天后,内存增长致1.4G,而我们产品的初始内存才有70M,问题很严重,决定采用WinDbg工具来分析代码问 ...

  8. 安装ubuntu16.04之后无法关机和重启

    这个问题是由于NVIDA驱动导致的,查询显卡型号,安装对应版本的驱动就可以解决此问题.ubuntu16.04 NVIDIA 驱动安装

  9. 【重磅推荐】嵌入式Linux经典书单(部分含视频)

    一直都有人问我要书单,在网上搜索大半天,没找到合适的,他们写的太不负责了,遂决定自己整理. 本书单综合了豆瓣知乎热评,尤其参考了一线开发者韦东山学员群的小伙伴们的意见, 再结合本人多年答疑经验整理而成 ...

  10. npm安装cnpm淘宝镜像

      npm set registry https://registry.npm.taobao.org # 注册模块镜像 npm set disturl https://npm.taobao.org/d ...