codevs——1008 选数
已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29)。
键盘输入,格式为:
n , k (1<=n<=20,k<n)
x1,x2,…,xn (1<=xi<=5000000)
屏幕输出,格式为:
一个整数(满足条件的种数)。
4 3
3 7 12 19
1
(1<=n<=20,k<n)
(1<=xi<=5000000)
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define N 50 using namespace std; int n,m,a[N],ans,sum,pos; int read() { ,f=; char ch=getchar(); ; ch=getchar();} +ch-'; ch=getchar();} return x*f; } int pd(int x) { ;i*i<=x;i++) ) return false; return true; } void dfs(int k) { if(pos==m) {ans+=pd(sum); return ;} for(int i=k;i<=n;i++) { pos++,sum+=a[i]; dfs(i+); sum-=a[i],pos--; } } int main() { n=read(),m=read(); ;i<=n;i++) a[i]=read(); dfs(); printf("%d",ans); ; }
codevs——1008 选数的更多相关文章
- codevs 1008 选数
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n ...
- 1008 选数 2002年NOIP全国联赛普及组
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description ...
- NOIP 2002提高组 选数 dfs/暴力
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- CODE VS1008选数
#include<cstdlib> #include<cstdio> #include<iostream> #include<cmath> #inclu ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
随机推荐
- PHPExcel探索之旅
学习地址: https://www.imooc.com/video/8359 下载地址: https://packagist.org/packages/phpoffice/phpexcel 用comp ...
- 谈谈你对Hibernate的理解
答: 1. 面向对象设计的软件内部运行过程可以理解成就是在不断创建各种新对象.建立对象之间的关系,调用对象的方法来改变各个对象的状态和对象消亡的过程,不管程序运行的过程和操作怎么样,本质上都是要得到一 ...
- SpringMVC总结以及在面试中的一些问题.
1.简单的谈一下SpringMVC的工作流程? 流程 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理 ...
- HDU - 1496 Equations (hash)
题意: 多组测试数据. 每组数据有一个方程 a*x1^2 + b*x2^2 + c*x3^2 + d*x4^2 = 0,方程中四个未知数 x1, x2, x3, x4 ∈ [-100, 100], 且 ...
- Java获得字节码对象的三种方式
1.Class 类的forName方法 Class clazz = Class.forName("com.test.Test"); 该方法要注意的是会抛出一个ClassNotFou ...
- Linux学习-备份要点
备份资料的考虑 老实说,备份是系统损毁时等待救援的救星!因为你需要重新安装系统时, 备份的好坏会影响到你 系统复原的进度!事实上,系统有可能由于不预期的伤害而导致系统发生错误! 什么是不预期的伤害呢? ...
- 异常 ndroid.view.InflateException: Binary XML file line #8: Error inflating class com.ouyang.test.MyView
发现自定义view时出现ndroid.view.InflateException: Binary XML file line #8: Error inflating class com.ouyang. ...
- 【Jenkins】Jenkins的安装与配置
一.环境准备 1.下载jdk 官方下载地址:http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-2133 ...
- bzoj3262陌上花开 三维数点 cdq+树状数组
大早上的做了一道三维数点一道五位数点,神清气爽! 先给一维排序,变成一个奇怪的动态的二维数点(相当于有一个扫描面扫过去,导致一系列的加点和询问) 然后cdq分治,再变回静态,考虑前半段对后半段的影响 ...
- luogu3469 [POI2008]BLO-Blockade
#include <iostream> #include <cstring> #include <cstdio> using namespace std; type ...