cf980d Perfect Groups
题意
定义一个串的权值是将其划分成 \(k\) 组,使得每一组在满足“从组里选出一个数,再从组里选出一个数,它们的乘积没有平方因子”这样的前提时的最小的 \(k\)。每组的数不必相邻, 不必连续。
现在给你一串数,问你,权值为 \(1,2,\ldots,n\) 的子串分别有多少个。
解答
显然如果一个数中含有平方因子,抹去平方因子也不会对答案产生影响。
因此对于一个串,抹去平方因子后,有多少种不同的数,权值就是多少。注意要特判 \(0\)。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <map>
using namespace std;
int n, a[5005], cnt, b[5005], ans[5005];
map<int,int> mp;
bool vis[5005];
int f(int x){
if(x>=-1 && x<=1) return x;
int flg=1;
if(x<0){
flg = -1;
x *= -1;
}
for(int i=2; i<=10000; i++){
if(i*i>x) break;
while(x%(i*i)==0)
x /= i * i;
}
return x*flg;
}
int main(){
cin>>n;
for(int i=1; i<=n; i++){
scanf("%d", &a[i]);
a[i] = f(a[i]);
if(!mp[a[i]]){
mp[a[i]] = ++cnt;
b[i] = cnt;
}
else b[i] = mp[a[i]];
}
for(int i=1; i<=n; i++){
cnt = 0;
memset(vis, 0, sizeof(vis));
for(int j=i; j<=n; j++){
if(a[j]==0){
if(!cnt) ans[1]++;
else ans[cnt]++;
}
else{
if(!vis[b[j]]){
vis[b[j]] = true;
cnt++;
}
ans[cnt]++;
}
}
}
for(int i=1; i<=n; i++)
printf("%d ", ans[i]);
return 0;
}
cf980d Perfect Groups的更多相关文章
- Codeforces 980 D. Perfect Groups
\(>Codeforces\space980 D. Perfect Groups<\) 题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘 ...
- CF 980D Perfect Groups(数论)
CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...
- Codeforces980 D. Perfect Groups
传送门:>Here< 题目大意:先抛出了一个问题——“已知一个序列,将此序列中的元素划分成几组(不需要连续)使得每一组中的任意两个数的乘积都是完全平方数.特殊的,一个数可以为一组.先要求最 ...
- Codeforces 980D Perfect Groups 计数
原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...
- codeforces 980D Perfect Groups
题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...
- Perfect Groups CodeForces - 980D
链接 题目大意: 定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数. 给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果 ...
- cf round480D Perfect Groups
题意:给一个序列,对于每一个连续的区间,区间内的数至少分成几个组,使得每个组内的数任意2个相乘是一个完全平方数(包括0). 输出每个组数的个数. $n \leq 5000 , |a_i| \leq 1 ...
- Understanding Kafka Consumer Groups and Consumer Lag
In this post, we will dive into the consumer side of this application ecosystem, which means looking ...
- Swift3.0服务端开发(一) 完整示例概述及Perfect环境搭建与配置(服务端+iOS端)
本篇博客算是一个开头,接下来会持续更新使用Swift3.0开发服务端相关的博客.当然,我们使用目前使用Swift开发服务端较为成熟的框架Perfect来实现.Perfect框架是加拿大一个创业团队开发 ...
随机推荐
- RING3到RING0
当我在说跳转时,说的什么? CPU有很多指令,不是所有的指令都能够随时用,比如 ltr指令就不是随便什么时候能用,在保护模式下,如果你不安规则来执行指令,CPU就会抛出异常,比如你在INTEL手册上就 ...
- Google地址
Google的访问一直很不稳定,经常被墙,无意间发现以下一些地址,特此记录. https://g.ttlsa.com/ https://wen.lu/ http://sinaapp.co https: ...
- SpringBoot的核心功能
1.独立运行的Spring项目 SpringBoot可以以jar包的形式独立运行,运行一个SpringBoot项目只需要通过java -jar xx.jar来启动. 2.内嵌Servlet容器 Spr ...
- 关闭VAX的拼写检查_解决中文红色警告问题
菜单VAssistX->Visual Assistant X Options->Advanced->Underlines下 取消“Underline spelling errors ...
- python 学习之FAQ:文档内容写入报错
2017.3.29 FAQ 1. 文档内容写入报错 使用with open() as file: 写入文档时,出现'\xa9'特殊字符写入报错,通过print('\xa9')打印输出“©”. > ...
- Python开发第三篇
函数 一.函数参数传值 形参:函数在定义的时候给定的参数 实参:函数在运行时赋给的参数: def func(i):#i为定义时的参数,为形参 pass func(name)#name为运行时的参数,为 ...
- 支持无限加载的js图片画廊插件
natural-gallery-js是一款支持无限加载的js图片画廊插件.该js图片画廊支持图片的懒加载,可以对图片进行搜索,分类,还可以以轮播图的方式来展示和切换图片. 使用方法 在页面中引入下面的 ...
- 3_HA介绍和安装部署
一.hadoop 2.x产生背景 1.hadoop 1.x中hdfs和mr在高可用和扩展性等方面存在问题.2.hdfs存在的问题:NN单点故障,难以应用于在线场景:NN压力过大,内存受限,影响系统扩展 ...
- MongoDB+nodejs查询并返回数据
const express = require('express');const router = express.Router(); const Monk = require('monk');con ...
- 第17题:打印1到最大的n位数
面试题17:打印1到最大的n位数 题目:输入数字n,按顺序打印出从1最大的n位十进制数.比如输入3,则打印出1.2.3一直到最大的3位数即999. 考点: 用字符串或者数组表达一个大数. 思路 1. ...