装饰器与lambda
装饰器
实际上理解装饰器的作用很简单,在看core python相关章节的时候大概就是这种感觉。只是在实际应用的时候,发现自己很难靠直觉决定如何使用装饰器,特别是带参数的装饰器,于是摊开来思考了一番,写下一些心得。
装饰器简述
为了完整起见,这里简要说明一下装饰器的语法。装饰器分为带参数得装饰器以及不带参数得装饰器。装饰器以及使用效果看起来大概是这样的。
#语法是这个样子的
@decorator(dec_opt_args)
def func2Bdecorated(func_opt_args):
...
#不带参数的装饰器
@dec1
@dec2
def func():
...
#这个函数声明等价于
func = dec1(dec2(func))
#带参数的装饰器
@dec(some_args)
def func():
...
#这个函数声明等价于
func = dec(some_args)(func)
不带参数的装饰器需要注意的一些细节
这里将说明使用带参数的装饰器时需要注意的一些细节。并会实现一个简单缓存装饰器,来帮助理解。
1. 关于装饰器函数(decorator)本身
对于被装饰的函数func,不带参数的装饰器接受一个函数为参数,并返回一个装饰过的函数decorated_func。因为对返回的函数没有限制,所以decorator函数甚至可以返回与func完全无关的新函数。但是大部分情况下,decorated_func是对func的额外处理,因此一个装饰器一般对应两个函数,一个是decorator函数,用来进行一些初始化操作处理,一个是decorated_func用来实现对被装饰的函数func的额外处理。并且为了保持对func的引用,decorated_func一般作为decorator的内部函数,比如:
#一般将decorated_func作为decorator的内部函数
#因为内部函数可以保持对func的引用(详见(1)的闭包讲解)
>>> def decorator(func):
... print 'init opration'
... def decorated_func():
... return func(2)
... return decorated_func
...
2. decorator函数只在函数声明的时候被调用一次
装饰器实际上是语法糖,在声明函数之后就会被调用,产生decorated_func,并把func符号的引用替换为decorated_func。之后每次调用func函数,实际调用的是decorated_func。
>>> def decorator(func):
... def decorated_func():
... func(1)
... return decorated_func
...
#声明时就被调用
>>> @decorator
... def func(x):
... print x
...
decorator being called
#使用func()函数实际上使用的是decorated_func函数
>>> func()
1
>>> func.__name__
'decorated_func'
如果要保证返回的decorated_func的函数名与func的函数名相同,应当在decorator函数返回decorated_func之前,加入decorated_func.__name__ = func.__name__, 另外functools模块提供了wraps装饰器,可以完成这一动作。
#@wraps(func)的操作相当于
#在return decorated_func之前,执行
#decorated_func.__name__ = func.__name__
#func作为装饰器参数传入,
#decorated_func则作为wraps返回的函数的参数传入
>>> def decorator(func):
... @wraps(func)
... def decorated_func():
... func(1)
... return decorated_func
...
#声明时就被调用
>>> @decorator
... def func(x):
... print x
...
decorator being called
#使用func()函数实际上使用的是decorated_func函数
>>> func()
1
>>> func.__name__
'func'
3. decorator函数局部变量的妙用
因为closure的特性(详见(1)部分闭包部分的详解),decorator声明的变量会被decorated_func.func_closure引用,所以调用了decorator方法结束之后,decorator方法的局部变量也不会被回收,因此可以用decorator方法的局部变量作为计数器,缓存等等。值得注意的是,如果要改变变量的值,该变量一定要是可变对象,因此就算是计数器,也应当用列表来实现。并且声明一次函数调用一次decorator函数,所以不同函数的计数器之间互不冲突,例如:
#!/usr/bin/env python
#filename decorator.py
def decorator(func):
#注意这里使用可变对象
a = [0]
def decorated_func(*args,**keyargs):
func(*args, **keyargs)
#因为闭包是浅拷贝,如果是不可变对象,每次调用完成后符号都会被清空,导致错误
a[0] += 1
print "%s have bing called %d times" % (func.__name__, a[0])
return decorated_func
@decorator
def func(x):
print x
@decorator
def theOtherFunc(x):
print x
>>> from decorator import func
>>> from decorator import theOtherFunc
>>> func(0)
0
func have bing called 1 times
>>> func(0)
0
func have bing called 2 times
>>> func(0)
0
func have bing called 3 times
>>> theOtherFunc(0)
0
theOtherFunc have bing called 1 times
>>> theOtherFunc(1)
1
theOtherFunc have bing called 2 times
>>> theOtherFunc(2)
2
theOtherFunc have bing called 3 times
4. 简单的结果缓存装饰器
#coding=UTF-8
#!/usr/bin/env python
#filename decorator.py
import time
from functools import wraps
def decorator(func):
"cache for function result, which is immutable with fixed arguments"
print "initial cache for %s" % func.__name__
cache = {}
@wraps(func)
def decorated_func(*args,**kwargs):
#key必须是可哈希对象
#这里其实不严谨,如果kwargs值有不可哈希对象会出错
#简单起见这里不再做特殊处理
key = (args, tuple(kwargs.items()))
result = None
#判断是否存在缓存
if key in cache:
(result, updateTime) = cache[key]
#过期时间固定为10秒
if time.time() -updateTime < 10:
print "cache hit for", key
else :
print "cache expired for", key
result = None
else:
print "no cache for ", key
#如果过期,或则没有缓存调用方法
if result is None:
result = func(*args, **kwargs)
cache[key] = (result, time.time())
return result
return decorated_func
@decorator
def func(x):
if x <=1:
return 1
return x + func(x-1)
>>> from decorator import func
initial cache for func
>>> func(5)
no cache for ((5,), ())
no cache for ((4,), ())
no cache for ((3,), ())
no cache for ((2,), ())
no cache for ((1,), ())
15
>>> func(5)
cache hit for ((5,), ())
15
>>> func(1)
cache expired for ((1,), ())
1
>>> func(2)
cache expired for ((2,), ())
cache hit for ((1,), ())
3
带参数的装饰器
熟悉了不带参数的装饰器的使用之后,理解带参数的装饰器就简单很多了。带参数的装饰器主要用来传递一些设置,或者用来选择不同的装饰器。
我们已经知道,不带参数的装饰器调用decorator返回decorated_func。那么带参数的装饰器,就是返回decorator方法,再由decorator方法处理后,返回decorated_func。因此带参数的装饰器一般由3个方法组成,首先,调用settings_func用来接受参数, 并选择decorator方法, 之后调用返回的decorator方法产生decorated_func来对func进行额外处理。
有了settings_func我们就可以对decorator进行定制。如之前的实现的缓存方法,过期时间固定为10秒,有了settings_func我们就可以自定义过期时间,判断是否进行调试输出等。
1. 为缓存装饰器增加配置参数
这里加入了对过期时间的配置,和调试输出的开关。
#coding=UTF-8
#!/usr/bin/env python
#filename decorator.py
import time
from functools import wraps
def cache(expirationTime, debug=False):
def decorator(func):
if debug:
print "initial cache for %s" % func.__name__
cache = {}
@wraps(func)
def decorated_func(*args,**kwargs):
#key必须是可哈希对象
#这里其实不严谨,如果kwargs值有不可哈希对象会出错
#简单起见这里不再做特殊处理
key = (args, tuple(kwargs.items()))
result = None
if key in cache:
(result, updateTime) = cache[key]
if time.time() -updateTime < expirationTime:
print "cache hit for", key
else :
if debug:
print "cache expired for", key
result = None
elif debug:
print "no cache for ", key
if result is None:
result = func(*args, **kwargs)
cache[key] = (result, time.time())
return result
return decorated_func
return decorator
@cache(10)
def func(x):
if x <=1:
return 1
return x + func(x-1)
可以看到除了cache hit,其他的消息都被debug=False关闭了。
>>> func(5)
15
>>> func(1)
cache hit for ((1,), ())
1
>>> func(2)
cache hit for ((2,), ())
3
>>> func(3)
cache hit for ((2,), ())
6
被装饰的函数共用变量
上面的例子由于装饰器的变量(计数器,缓存)是在装饰器的方法中声明的,所以不同方法的这些变量是不通用的。要使得同一个装饰器装饰的不同方法变量通用(如共用缓存等),可以使用类属性,或全局变量来实现。
lambda表达式
lambda表达式实际上就是匿名函数,类似javascript的function([arg1,[arg2[...]]]){...}。 python中lambda表达式返回的就是函数实例。 语法中lambda后面跟随的是参数, 冒号后面跟随的是返回的结果。
>>> bar = lambda x,y : x+y
>>> type(bar)
<type 'function'>
>>> bar(1,2)
3
同时,lambda表达式也具有closure(闭包)的特性:
>>> def foo():
... x = 5
... y = 5
... bar = lambda : x+y
... return bar
...
>>> foo()()
10
总之,函数具有的特性,lambda表达式都具有。像给参数赋默认值啊, lambda内部的变量不受外部影响啊,全部都与函数的行为一模一样。
#默认参数
>>> y=2
>>> bar = lambda x, y =y : x + y
>>> bar(3)
5
#lambda定义的变量不受外部影响
>>> y = 5
>>> bar(3)
5
>>>
装饰器与lambda的更多相关文章
- Python函数小结(2)-- 装饰器、 lambda
本篇依然是一篇学习笔记,文章的结构首先讲装饰器,然后讲lambda表达式.装饰器内容较多,先简要介绍了装饰器语法,之后详细介绍理解和使用不带参数装饰器时应当注意到的一些细节,然后实现了一个简单的缓存装 ...
- python day5 lambda,内置函数,文件操作,冒泡排序以及装饰器
目录 python day 5 1. 匿名函数lambda 2. python的内置函数 3. python文件操作 4. 递归函数 5. 冒泡排序 6. 装饰器 python day 5 2019/ ...
- Python之路第一课Day4--随堂笔记(迭代生成装饰器)
上节回顾: 1.集合 a.关系测试 b.去重 2.文件操作及编码 3.函数 4.局部变量和全局变量 上节回顾 本节课内容: 1.迭代器生成器 2.装饰器 3.json pickle数据序列化 4.软件 ...
- python高级之装饰器
python高级之装饰器 本节内容 高阶函数 嵌套函数及闭包 装饰器 装饰器带参数 装饰器的嵌套 functools.wraps模块 递归函数被装饰 1.高阶函数 高阶函数的定义: 满足下面两个条件之 ...
- python基础知识7——迭代器,生成器,装饰器
迭代器 1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器 ...
- python3.5-day5_迭代器_生成器_装饰器_模块
笔者QQ 360212316 迭代器&生成器 生成器: 一个函数调用返回一个迭代器,那这个函数叫做生成器,如果函数中包含yield语法,那么这个函数就会变成生成器 生成器的特点: 1.生成器必 ...
- Python 第五天 装饰器
装饰器 装饰器是函数,只不过该函数可以具有特殊的含义,装饰器用来装饰函数或类,使用装饰器可以在函数执行前和执行后添加相应操作. def wrapper(func): def result(): pri ...
- python 装饰器学习(decorator)
最近看到有个装饰器的例子,没看懂, #!/usr/bin/python class decorator(object): def __init__(self,f): print "initi ...
- python 内置函数和函数装饰器
python内置函数 1.数学相关 abs(x) 取x绝对值 divmode(x,y) 取x除以y的商和余数,常用做分页,返回商和余数组成一个元组 pow(x,y[,z]) 取x的y次方 ,等同于x ...
随机推荐
- ES5数组遍历
reduce() 方法接收一个函数作为累加器,数组中的每个值(从左到右)开始缩减,最终计算为一个值. array.reduce(function(total, currentValue, curren ...
- BroadCast广播机制应用与实例
如何编写广播接收器 第一步:需要继承BroadcastReceiver类,覆写其中的onReceive()方法. class MyBroadcastReceiver extends Broadcast ...
- 第一天课程-html基础
一.课程内容: 1.安装需要的软件 安装了三个软件:Adobe Dreamweaver,EmEditor,FSCapture.分别是前端开发软件.功能强大的文本编辑器,截图录屏软件 2.了解文件格式. ...
- Node.js 历史
Node.js 是在 2009年5月份创建的,是属于典型的 Git 和 GitHub 时代最初孕育的项目.另外需要先说明一点,那就是回顾 Node.js 的历史,并不是仅仅为了给大家回味,而是想找到在 ...
- VMware与Hyper-V不兼容
一.问题描述 VMware Workstation与Hyper-V不兼容. 二.解决方案 取消Hyper-V功能,即将Hyper-V框中钩去掉. 三.总结思考 开始不清楚怎么解决这个问题,主要原因在于 ...
- Oracle关于TX锁的一个有趣的问题
前阵子有一个网友在群里问了一个关于Oracle数据库的TX锁问题,问题原文如下: 请教一个问题: 两个会话执行不同的delete语句,结果都是删除同一个行.先执行的会话里where条件不加索引走全表扫 ...
- servlet forword服务器端跳转
web.xml中配置servlet的映射和访问路径 <?xml version="1.0" encoding="UTF-8"?><web-ap ...
- Windows UEFI 安装策略的一个细节
在计算机已连接任何带Windows Boot Manager的硬盘的时候,系统自己不会创建EFI分区,而是用之前的
- Spark集群任务提交
1. 集群管理器 Spark当前支持三种集群管理方式 Standalone—Spark自带的一种集群管理方式,易于构建集群. Apache Mesos—通用的集群管理,可以在其上运行Hadoop Ma ...
- webpack安装包的时候 1程序目录不要在C盘 2路径不要有中文 3用cnpm
webpack安装包的时候 1程序目录不要在C盘 2路径不要有中文 3用cnpm