http://blog.csdn.net/chenyusiyuan/article/details/8710462

2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报
 分类:
机器视觉(34) 

版权声明:本文为博主原创文章,未经博主允许不得转载。

 

目录(?)[+]

 

KAZE系列笔记:

  1. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
  2. OpenCV学习笔记(28)KAZE 算法原理与源码分析(二)非线性尺度空间构建
  3. OpenCV学习笔记(29)KAZE 算法原理与源码分析(三)特征检测与描述
  4. OpenCV学习笔记(30)KAZE 算法原理与源码分析(四)KAZE特征的性能分析与比较
  5. OpenCV学习笔记(31)KAZE 算法原理与源码分析(五)KAZE的性能优化及与SIFT的比较

KAZE算法资源:

  1. 论文:  http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla12eccv.pdf
  2. 项目主页:http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html
  3. 作者代码:http://www.robesafe.com/personal/pablo.alcantarilla/code/kaze_features_1_4.tar 
    (需要boost库,另外其计时函数的使用比较复杂,可以用OpenCV的cv::getTickCount代替)
  4. Computer Vision Talks的评测:http://computer-vision-talks.com/2013/03/porting-kaze-features-to-opencv/
  5. Computer Vision Talks 博主Ievgen Khvedchenia将KAZE集成到OpenCV的cv::Feature2D类,但需要重新编译OpenCV,并且没有实现算法参数调整和按Mask过滤特征点的功能:https://github.com/BloodAxe/opencv/tree/kaze-features
  6. 我在Ievgen的项目库中提取出KAZE,封装成继承cv::Feature2D的类,无需重新编译OpenCV,实现了参数调整和Mask过滤的功能: https://github.com/yuhuazou/kaze_opencv (2013-03-28更新,对KAZE代码进行了优化)
  7. Matlab 版的接口程序,封装了1.0版的KAZE代码:https://github.com/vlfeat/vlbenchmarks/blob/unstable/%2BlocalFeatures/Kaze.m

简介

ECCV2012中出现了一种比SIFT更稳定的特征检测算法KAZE ([1])。KAZE的取名是为了纪念尺度空间分析的开创者—日本学者Iijima。KAZE是日语‘风’的谐音,寓意是就像风的形成是空气在空间中非线性的流动过程一样,KAZE特征检测是在图像域中进行非线性扩散处理的过程。

传统的SIFT、SURF等特征检测算法都是基于线性的高斯金字塔进行多尺度分解来消除噪声和提取显著特征点。但高斯分解是牺牲了局部精度为代价的,容易造成边界模糊和细节丢失。非线性的尺度分解有望解决这种问题,但传统方法基于正向欧拉法(forward Euler scheme)求解非线性扩散(Non-linear diffusion)方程时迭代收敛的步长太短,耗时长、计算复杂度高。由此,KAZE算法的作者提出采用加性算子分裂算法(Additive Operator Splitting, AOS)来进行非线性扩散滤波,可以采用任意步长来构造稳定的非线性尺度空间。

注:KAZE算法的原理与SIFT和SURF有很多相似之处,在深入了解KAZE之前,可以参考以下的博客文章对SIFT和SURF的介绍:

  1. 【OpenCV】SIFT原理与源码分析 - 小魏的修行路 (很不错的博客,用心、认真、图文并茂)
  2. SIFT特征提取分析 - Rachel Zhang的专栏 (这里的分析也很详细)
  3. Surf算法学习心得(一)——算法原理 - yang_yong’ blog
  4. Opencv学习笔记(六)SURF学习笔记 - crazy_sparrow的专栏

1.1 非线性扩散滤波

1.1.1 Perona-Malik扩散方程

具体地,非线性扩散滤波方法是将图像亮度(L)在不同尺度上的变化视为某种形式的流动函数(flow function)的散度(divergence),可以通过非线性偏微分方程来描述:

通过设置合适的传导函数 c(x,y,t) ,可以使得扩散自适应于图像的局部结构。传导函数可以是标量、也可以是张量。时间t作为尺度参数,其值越大、则图像的表示形式越简单。Perona和Malik提出了传导函数的构造方式:

其中的▽Lσ是高斯平滑后的图像Lσ的梯度(gradient)。函数 g() 的形式有如下几种:

其中函数g1优先保留高对比度的边缘,g2优先保留宽度较大的区域,g3能够有效平滑区域内部而保留边界信息(KAZE代码中默认采用函数g2)。

函数g1、g2、g3的实现代码如下(在文件 kaze_nldiffusion_functions.cpp 中):

  1. //*************************************************************************************
  2. //*************************************************************************************
  3. /**
  4. * @brief This function computes the Perona and Malik conductivity coefficient g1
  5. * g1 = exp(-|dL|^2/k^2)
  6. * @param src Input image
  7. * @param dst Output image
  8. * @param Lx First order image derivative in X-direction (horizontal)
  9. * @param Ly First order image derivative in Y-direction (vertical)
  10. * @param k Contrast factor parameter
  11. */
  12. void PM_G1(const cv::Mat &src, cv::Mat &dst, cv::Mat &Lx, cv::Mat &Ly, float k )
  13. {
  14. cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly))/(k*k),dst);
  15. }
  16. //*************************************************************************************
  17. //*************************************************************************************
  18. /**
  19. * @brief This function computes the Perona and Malik conductivity coefficient g2
  20. * g2 = 1 / (1 + dL^2 / k^2)
  21. * @param src Input image
  22. * @param dst Output image
  23. * @param Lx First order image derivative in X-direction (horizontal)
  24. * @param Ly First order image derivative in Y-direction (vertical)
  25. * @param k Contrast factor parameter
  26. */
  27. void PM_G2(const cv::Mat &src, cv::Mat &dst, cv::Mat &Lx, cv::Mat &Ly, float k )
  28. {
  29. dst = 1./(1. + (Lx.mul(Lx) + Ly.mul(Ly))/(k*k));
  30. }
  31. //*************************************************************************************
  32. //*************************************************************************************
  33. /**
  34. * @brief This function computes Weickert conductivity coefficient g3
  35. * @param src Input image
  36. * @param dst Output image
  37. * @param Lx First order image derivative in X-direction (horizontal)
  38. * @param Ly First order image derivative in Y-direction (vertical)
  39. * @param k Contrast factor parameter
  40. * @note For more information check the following paper: J. Weickert
  41. * Applications of nonlinear diffusion in image processing and computer vision,
  42. * Proceedings of Algorithmy 2000
  43. */
  44. void Weickert_Diffusivity(const cv::Mat &src, cv::Mat &dst, cv::Mat &Lx, cv::Mat &Ly, float k )
  45. {
  46. cv::Mat modg;
  47. cv::pow((Lx.mul(Lx) + Ly.mul(Ly))/(k*k),4,modg);
  48. cv::exp(-3.315/modg, dst);
  49. dst = 1.0 - dst;
  50. }

参数k是控制扩散级别的对比度因子(contrast factor),能够决定保留多少边缘信息,其值越大,保留的边缘信息越少。在KAZE算法中,参数k的取值是梯度图像▽Lσ的直方图70% 百分位上的值:

计算参数k的实现源码如下(在文件 kaze_nldiffusion_functions.cpp 中):

  1. //*************************************************************************************
  2. //*************************************************************************************
  3. /**
  4. * @brief This function computes a good empirical value for the k contrast factor
  5. * given an input image, the percentile (0-1), the gradient scale and the number of
  6. * bins in the histogram
  7. * @param img Input image
  8. * @param perc Percentile of the image gradient histogram (0-1)
  9. * @param gscale Scale for computing the image gradient histogram
  10. * @param nbins Number of histogram bins
  11. * @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
  12. * @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
  13. * @return k contrast factor
  14. */
  15. float Compute_K_Percentile(const cv::Mat &img, float perc, float gscale, unsigned int nbins, unsigned int ksize_x, unsigned int ksize_y)
  16. {
  17. float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
  18. unsigned int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
  19. float npoints = 0.0;    // number of points of which gradient greater than zero
  20. float hmax = 0.0;       // maximum gradient
  21. // Create the array for the histogram
  22. float *hist = new float[nbins];
  23. // Create the matrices
  24. cv::Mat gaussian = cv::Mat::zeros(img.rows,img.cols,CV_32F);
  25. cv::Mat Lx = cv::Mat::zeros(img.rows,img.cols,CV_32F);
  26. cv::Mat Ly = cv::Mat::zeros(img.rows,img.cols,CV_32F);
  27. // Set the histogram to zero, just in case
  28. for( unsigned int i = 0; i < nbins; i++ )
  29. {
  30. hist[i] = 0.0;
  31. }
  32. // Perform the Gaussian convolution
  33. Gaussian_2D_Convolution(img,gaussian,ksize_x,ksize_y,gscale);
  34. // Compute the Gaussian derivatives Lx and Ly
  35. Image_Derivatives_Scharr(gaussian,Lx,1,0);
  36. Image_Derivatives_Scharr(gaussian,Ly,0,1);
  37. // Skip the borders for computing the histogram
  38. for( int i = 1; i < gaussian.rows-1; i++ )
  39. {
  40. for( int j = 1; j < gaussian.cols-1; j++ )
  41. {
  42. lx = *(Lx.ptr<float>(i)+j);
  43. ly = *(Ly.ptr<float>(i)+j);
  44. modg = sqrt(lx*lx + ly*ly);
  45. // Get the maximum
  46. if( modg > hmax )
  47. {
  48. hmax = modg;
  49. }
  50. }
  51. }
  52. // Skip the borders for computing the histogram
  53. for( int i = 1; i < gaussian.rows-1; i++ )
  54. {
  55. for( int j = 1; j < gaussian.cols-1; j++ )
  56. {
  57. lx = *(Lx.ptr<float>(i)+j);
  58. ly = *(Ly.ptr<float>(i)+j);
  59. modg = sqrt(lx*lx + ly*ly);     // modg can be stored in a matrix in last step in oder to avoid re-computation
  60. // Find the correspondent bin
  61. if( modg != 0.0 )
  62. {
  63. nbin = floor(nbins*(modg/hmax));
  64. if( nbin == nbins )
  65. {
  66. nbin--;
  67. }
  68. hist[nbin]++;
  69. npoints++;
  70. }
  71. }
  72. }
  73. // Now find the perc of the histogram percentile
  74. nthreshold = (unsigned int)(npoints*perc);
  75. // find the bin (k) in which accumulated points are greater than 70% (perc) of total valid points (npoints)
  76. for( k = 0; nelements < nthreshold && k < nbins; k++)
  77. {
  78. nelements = nelements + hist[k];
  79. }
  80. if( nelements < nthreshold )
  81. {
  82. kperc = 0.03;
  83. }
  84. else
  85. {
  86. kperc = hmax*((float)(k)/(float)nbins);
  87. }
  88. delete hist;
  89. return kperc;
  90. }

注:有关非线性扩散滤波的应用,参见[2]。

1.1.2 AOS算法

由于非线性偏微分方程并没有解析解,一般通过数值分析的方法进行迭代求解。传统上采用显式差分格式的求解方法只能采用小步长,收敛缓慢。为此,将方程离散化为以下的隐式差分格式:

其中Al是表示图像在各维度(l)上传导性的矩阵。该方程的解如下:

这种求解方法对任意时间步长(τ)都有效。上式中矩阵Al是三对角矩阵并且对角占优(tridiagonal and diagonally dominant matrix),这样的线性系统可以通过Thomas算法快速求解。(有关AOS的应用,参见[3])

该算法的实现源码如下(在文件 kaze.cpp 中):

  1. //*************************************************************************************
  2. //*************************************************************************************
  3. /**
  4. * @brief This method performs a scalar non-linear diffusion step using AOS schemes
  5. * @param Ld Image at a given evolution step
  6. * @param Ldprev Image at a previous evolution step
  7. * @param c Conductivity image
  8. * @param stepsize Stepsize for the nonlinear diffusion evolution
  9. * @note If c is constant, the diffusion will be linear
  10. * If c is a matrix of the same size as Ld, the diffusion will be nonlinear
  11. * The stepsize can be arbitrarilly large
  12. */
  13. void KAZE::AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float stepsize)
  14. {
  15. AOS_Rows(Ldprev,c,stepsize);
  16. AOS_Columns(Ldprev,c,stepsize);
  17. Ld = 0.5*(Lty + Ltx.t());
  18. }
  19. //*************************************************************************************
  20. //*************************************************************************************
  21. /**
  22. * @brief This method performs a scalar non-linear diffusion step using AOS schemes
  23. * Diffusion in each dimension is computed independently in a different thread
  24. * @param Ld Image at a given evolution step
  25. * @param Ldprev Image at a previous evolution step
  26. * @param c Conductivity image
  27. * @param stepsize Stepsize for the nonlinear diffusion evolution
  28. * @note If c is constant, the diffusion will be linear
  29. * If c is a matrix of the same size as Ld, the diffusion will be nonlinear
  30. * The stepsize can be arbitrarilly large
  31. */
  32. #if HAVE_THREADING_SUPPORT
  33. void KAZE::AOS_Step_Scalar_Parallel(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float stepsize)
  34. {
  35. boost::thread *AOSth1 = new boost::thread(&KAZE::AOS_Rows,this,Ldprev,c,stepsize);
  36. boost::thread *AOSth2 = new boost::thread(&KAZE::AOS_Columns,this,Ldprev,c,stepsize);
  37. AOSth1->join();
  38. AOSth2->join();
  39. Ld = 0.5*(Lty + Ltx.t());
  40. delete AOSth1;
  41. delete AOSth2;
  42. }
  43. #endif
  44. //*************************************************************************************
  45. //*************************************************************************************
  46. /**
  47. * @brief This method performs performs 1D-AOS for the image rows
  48. * @param Ldprev Image at a previous evolution step
  49. * @param c Conductivity image
  50. * @param stepsize Stepsize for the nonlinear diffusion evolution
  51. */
  52. void KAZE::AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float stepsize)
  53. {
  54. // Operate on rows
  55. for( int i = 0; i < qr.rows; i++ )
  56. {
  57. for( int j = 0; j < qr.cols; j++ )
  58. {
  59. *(qr.ptr<float>(i)+j) = *(c.ptr<float>(i)+j) + *(c.ptr<float>(i+1)+j);
  60. }
  61. }
  62. for( int j = 0; j < py.cols; j++ )
  63. {
  64. *(py.ptr<float>(0)+j) = *(qr.ptr<float>(0)+j);
  65. }
  66. for( int j = 0; j < py.cols; j++ )
  67. {
  68. *(py.ptr<float>(py.rows-1)+j) = *(qr.ptr<float>(qr.rows-1)+j);
  69. }
  70. for( int i = 1; i < py.rows-1; i++ )
  71. {
  72. for( int j = 0; j < py.cols; j++ )
  73. {
  74. *(py.ptr<float>(i)+j) = *(qr.ptr<float>(i-1)+j) + *(qr.ptr<float>(i)+j);
  75. }
  76. }
  77. // a = 1 + t.*p; (p is -1*p)
  78. // b = -t.*q;
  79. ay = 1.0 + stepsize*py; // p is -1*p
  80. by = -stepsize*qr;
  81. // Call to Thomas algorithm now
  82. Thomas(ay,by,Ldprev,Lty);
  83. }
  84. //*************************************************************************************
  85. //*************************************************************************************
  86. /**
  87. * @brief This method performs performs 1D-AOS for the image columns
  88. * @param Ldprev Image at a previous evolution step
  89. * @param c Conductivity image
  90. * @param stepsize Stepsize for the nonlinear diffusion evolution
  91. */
  92. void KAZE::AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float stepsize)
  93. {
  94. // Operate on columns
  95. for( int j = 0; j < qc.cols; j++ )
  96. {
  97. for( int i = 0; i < qc.rows; i++ )
  98. {
  99. *(qc.ptr<float>(i)+j) = *(c.ptr<float>(i)+j) + *(c.ptr<float>(i)+j+1);
  100. }
  101. }
  102. for( int i = 0; i < px.rows; i++ )
  103. {
  104. *(px.ptr<float>(i)) = *(qc.ptr<float>(i));
  105. }
  106. for( int i = 0; i < px.rows; i++ )
  107. {
  108. *(px.ptr<float>(i)+px.cols-1) = *(qc.ptr<float>(i)+qc.cols-1);
  109. }
  110. for( int j = 1; j < px.cols-1; j++ )
  111. {
  112. for( int i = 0; i < px.rows; i++ )
  113. {
  114. *(px.ptr<float>(i)+j) = *(qc.ptr<float>(i)+j-1) + *(qc.ptr<float>(i)+j);
  115. }
  116. }
  117. // a = 1 + t.*p';
  118. ax = 1.0 + stepsize*px.t();
  119. // b = -t.*q';
  120. bx = -stepsize*qc.t();
  121. // Call Thomas algorithm again
  122. // But take care since we need to transpose the solution!!
  123. Thomas(ax,bx,Ldprev.t(),Ltx);
  124. }
  125. //*************************************************************************************
  126. //*************************************************************************************
  127. /**
  128. * @brief This method does the Thomas algorithm for solving a tridiagonal linear system
  129. * @note The matrix A must be strictly diagonally dominant for a stable solution
  130. */
  131. void KAZE::Thomas(cv::Mat a, cv::Mat b, cv::Mat Ld, cv::Mat x)
  132. {
  133. // Auxiliary variables
  134. int n = a.rows;
  135. cv::Mat m = cv::Mat::zeros(a.rows,a.cols,CV_32F);
  136. cv::Mat l = cv::Mat::zeros(b.rows,b.cols,CV_32F);
  137. cv::Mat y = cv::Mat::zeros(Ld.rows,Ld.cols,CV_32F);
  138. /** A*x = d;                                                                            */
  139. /**  / a1 b1  0  0 0  ...    0 \  / x1 \ = / d1 \                                           */
  140. /**  | c1 a2 b2  0 0  ...    0 |  | x2 | = | d2 |                                           */
  141. /**  |  0 c2 a3 b3 0  ...    0 |  | x3 | = | d3 |                                           */
  142. /**  |  :  :  :  : 0  ...    0 |  |  : | = |  : |                                           */
  143. /**  |  :  :  :  : 0  cn-1  an |  | xn | = | dn |                                           */
  144. /** 1. LU decomposition
  145. / L = / 1                 \      U = / m1 r1            \
  146. /     | l1 1              |          |    m2 r2         |
  147. /     |    l2 1          |           |       m3 r3      |
  148. /      |     : : :        |          |       :  :  :    |
  149. /      \           ln-1 1 /          \               mn /    */
  150. for( int j = 0; j < m.cols; j++ )
  151. {
  152. *(m.ptr<float>(0)+j) = *(a.ptr<float>(0)+j);
  153. }
  154. for( int j = 0; j < y.cols; j++ )
  155. {
  156. *(y.ptr<float>(0)+j) = *(Ld.ptr<float>(0)+j);
  157. }
  158. // 2. Forward substitution L*y = d for y
  159. for( int k = 1; k < n; k++ )
  160. {
  161. for( int j=0; j < l.cols; j++ )
  162. {
  163. *(l.ptr<float>(k-1)+j) = *(b.ptr<float>(k-1)+j) / *(m.ptr<float>(k-1)+j);
  164. }
  165. for( int j=0; j < m.cols; j++ )
  166. {
  167. *(m.ptr<float>(k)+j) = *(a.ptr<float>(k)+j) - *(l.ptr<float>(k-1)+j)*(*(b.ptr<float>(k-1)+j));
  168. }
  169. for( int j=0; j < y.cols; j++ )
  170. {
  171. *(y.ptr<float>(k)+j) = *(Ld.ptr<float>(k)+j) - *(l.ptr<float>(k-1)+j)*(*(y.ptr<float>(k-1)+j));
  172. }
  173. }
  174. // 3. Backward substitution U*x = y
  175. for( int j=0; j < y.cols; j++ )
  176. {
  177. *(x.ptr<float>(n-1)+j) = (*(y.ptr<float>(n-1)+j))/(*(m.ptr<float>(n-1)+j));
  178. }
  179. for( int i = n-2; i >= 0; i-- )
  180. {
  181. for( int j = 0; j < x.cols; j++ )
  182. {
  183. *(x.ptr<float>(i)+j) = (*(y.ptr<float>(i)+j) - (*(b.ptr<float>(i)+j))*(*(x.ptr<float>(i+1)+j)))/(*(m.ptr<float>(i)+j));
  184. }
  185. }
  186. }

上面介绍了非线性扩散滤波和AOS求解隐性差分方程的原理,是KAZE算法求解非线性尺度空间的基础,下一节我们将介绍KAZE算法的非线性尺度空间构建、特征检测与描述等内容。

待续...

Ref:

[1] http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla12eccv.pdf

[2] http://manu16.magtech.com.cn/geoprog/CN/article/downloadArticleFile.do?attachType=PDF&id=3146

[3] http://file.lw23.com/8/8e/8ec/8ecd21e4-b030-4e05-9333-40cc2d97bde4.pdf

OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波的更多相关文章

  1. 并发编程学习笔记(9)----AQS的共享模式源码分析及CountDownLatch使用及原理

    1. AQS共享模式 前面已经说过了AQS的原理及独享模式的源码分析,今天就来学习共享模式下的AQS的几个接口的源码. 首先还是从顶级接口acquireShared()方法入手: public fin ...

  2. 并发编程学习笔记(8)----ThreadLocal的使用及源码分析

    1. ThreadLocal的理解 ThreadLocal,顾名思义,就是线程的本地变量,ThreadLocal会为每个线程创建一个本地变量副本,使得使用ThreadLocal管理的变量在多线程的环境 ...

  3. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  4. 【OpenCV】SIFT原理与源码分析:关键点描述

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...

  5. 【OpenCV】SIFT原理与源码分析:方向赋值

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<关键点搜索与定位>,我们已经找到 ...

  6. 【OpenCV】SIFT原理与源码分析:关键点搜索与定位

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了 ...

  7. ConcurrentHashMap实现原理及源码分析

    ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...

  8. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  9. HashMap实现原理及源码分析之JDK8

    继续上回HashMap的学习 HashMap实现原理及源码分析之JDK7 转载 Java8源码-HashMap  基于JDK8的HashMap源码解析  [jdk1.8]HashMap源码分析 一.H ...

随机推荐

  1. log4cxx 使用代码进行配置

    (1)官网的一个例子 #include <log4cxx/logger.h> #include <log4cxx/helpers/pool.h> #include <lo ...

  2. ecshop 去版权(前台)

    该偏文章模板堂搜集总结,包括ecshop前台版权,ecshop后台版权,一个都不留,干干净净,推荐收藏 一.去掉网页标题 Powered by ECShop 打开includes/lib_main.p ...

  3. python--windows下安装BeautifulSoup

    python有很多内置的模块可以不安装使用,用起来非常方便,但是也有一些挺有用的非内置的模块不能直接使用,需要话费点力气手动安装. 进入python安装目录下的Scripts目录,查看是否有pip工具 ...

  4. asp.net导出excel科学计数问题

    方法一: 在asp.net 中 我一般都是将要导出的数据放到gridview网格里,首先对网格邦定数据时 字符串形式处理,然后再用普通的形式导出excel就把问题解决了. 我的代码非常简单:在邦定gr ...

  5. wpf 类似TextBlock外观的Button的样式

    <Style x:Key="noborderbtnStyle" TargetType="{x:Type Button}"> <Setter P ...

  6. sqlserver日志文件过大的处理方法

      SqlServer 数据库中与备份和恢复相关的日志文件有MDF和LDF文件 存在于\\sqlserver_install_dir\MSSQL\Data\1.文件解释.mdf文件    MDF是SQ ...

  7. idea编译报错:未结束的字符串文字;非法的表达式;未结束的字符串字面值

    在idea的Settings中,找到File Encodings,将IDE Encoding 改为UTF-8 要多试几次,清除缓存什么的,具体原因不知道,不过经常第一次修改不能成功.

  8. WPF 常用样式

    TextBox <Window x:Class="WpfDemo.ListBoxTemaple" xmlns="http://schemas.microsoft.c ...

  9. mysql 修改 添加 删除 表字段

    添加表的字段    alter table 表名  add  字段名  字段的类型 例子:        alter table table1 add transactor varchar(10) n ...

  10. NSUserDefault -- synchronize 浅析

    NSUserDefault的使用比较简单:NSUserDefaults *mySettingData = [NSUserDefaults standardUserDefaults];  创建NSUse ...