不得不说数位DP和博弈论根本不熟啊QAQ,首先这道题嘛~~~可以分成两个子问题:

  1. 有加密:直接算出0~n中二进制每一位为0或为1分别有多少个,然后分位累加求和就行了= =

  2. 无加密:分别算出0~n中二进制每一位为0或为1分别有多少个,然后对于为0或1该分别采取什么措施,对后面位数会有什么影响就行了

说白了就是这么简单(别打我QAQ)然后就是慢慢找到dp的正确方式了QAQ(请原谅我的蒟蒻,调了2天QAQ)

CODE:

#include<cstdio>

#include<iostream>

#include<cstring>

#include<algorithm>

#include<cmath>

using namespace std;

int len;long long n;

double a[100];

double part2(){

double ans=0;long long m=n;

a[0]=n&1?2.0/(n+1):1.0/(n+1);

for (int i=1;i<len-1;i++)

if (n&(1ll<<i)) a[i]=a[i-1]+(1ll<<i)*1.0/(n+1)*(1ll<<i)*2+((1ll<<i)-1)*1.0/(n+1)*(1ll<<i);

else a[i]=a[i-1]*2+(1ll<<i)*1.0/(n+1)*(1ll<<i);

for (int i=len-1;i>=0;i--){

if (n&(1ll<<i)) {

if (m&(1ll<<i)){

ans+=((1ll<<(i+1))-1)*1.0*(m+1-(1ll<<i))/(n+1);

m=(1ll<<i)-1;

}

ans+=(1ll<<i)*1.0*(m+1)/(n+1);

}else

if (m&(1ll<<i)){

ans+=(1ll<<i)*1.0*(m+1-(1ll<<i))/(n+1);

m^=(1ll<<i);

ans+=i-1>=0?a[i-1]:0;

}

}

return ans;

}

double part1(){

double ans=0;n++;

for (int i=len-1;i>=0;i--){

double pi=(n/(1ll<<(i+1))*1.0*(1ll<<i) + (max ((n % (1ll<<(i+1)))-(1ll<<i),0ll)*1.0))*1.0 /n;

ans+=pi*2*(1-pi)*(1ll<<i);

}

return ans;

}

int main(){

double p;

scanf("%lld%lf",&n,&p);

n--;

while ((1ll<<len)<=n) len++;

double ans2=part2();

double ans1=part1();

printf("%lf\n",ans1*(1-p)+ans2*(p));

return 0;

}

BZOJ 3652: 大新闻(数位DP+概率论)的更多相关文章

  1. [BZOJ 3652]大新闻

    [BZOJ 3652] 大新闻 题意 随机从 \([0,n)\) 中选取一个整数 \(x\), 并从 \([0,n)\) 中再选取一个整数 \(y\). 有 \(p\) 的概率选取一个能令 \(x\o ...

  2. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  3. BZOJ 3131 [SDOI2013]淘金 - 数位DP

    传送门 Solution 这道数位$DP$看的我很懵逼啊... 首先我们肯定要先预处理出 $12$位乘起来的所有的可能情况, 记录入数组 $b$, 发现个数并不多, 仅$1e4$不到. 然后我们考虑算 ...

  4. HDU 3652 B-number(数位dp)

    题意:B数的定义是有字符串“13”且能被整数13整除的数,求[1,n]内的B数个数. 题解:这是数位DP,我也就是刚入门,前两天看到了非递归写法,好麻烦.所以我建议写dfs的方法,容易理解,代码还简短 ...

  5. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  6. BZOJ 4521 [CQOI2016]手机号码 - 数位DP

    Description 在$[L, R]$找出有几个数满足两个条件 : 1 : 不同时含有$4$ 和 $8$ 2 : 至少有$3$个相邻的数相同 Solution 非常容易的数位DP, $pos$ 为 ...

  7. BZOJ 1799 同类分布(数位DP)

    给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...

  8. bzoj 3329: Xorequ【数位dp+矩阵乘法】

    注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...

  9. BZOJ 4029 [HEOI2015] 定价 ( 数位DP/贪心 )

    前言 最近学了数位DP,感觉挺简单又实用.这道题就比较水,可以用300B的贪心过掉-网上似乎大多是贪心的题解,我就写写DP的做法 题意 给出正整数区间[L,R][L,R][L,R],定义荒谬值为 (去 ...

随机推荐

  1. 了解HTML/HTML5中的download属性

    一.download属性是个什么鬼? 首先看下面这种截图: 如果我们想实现点击上面的下载按钮下载一张图片,你会如何实现? 我们可能会想到一个最简单的方法,就是直接按钮a标签链接一张图片,类似下面这样: ...

  2. DownloadManager 版本更新,出现 No Activity found to handle Intent 的解决办法

    项目中,进行版本更新的时候,用的是自己写的下载方案,最近看到了使用系统服务 DownloadManager 进行版本更新,自己也试试. 在下载完成以后,安装更新的时候,出现了一个 crash,抓取的 ...

  3. IOS开发-UI学习-沙盒机制&文件操作

    ž苹果为软件的运行提供了一个沙盒机制 每个沙盒含有3个文件夹:Documents, Library 和 tmp.因为应用的沙盒机制,应用只能在几个目录下读写文件 žDocuments:苹果建议将程序中 ...

  4. UVa 10551 - Basic Remains

    题目大意:关于大数的mod和进制转换,直接使用Java的BigInteger类,正在copy式学习中... import java.io.*; import java.util.*; import j ...

  5. Practice Round China New Grad Test 2014 报告

    今天有Google of Greater China Test for New Grads of 2014的练习赛,主要是为了过几天的校园招聘测试做练习用的,帮助熟悉平台,题目嘛,个人觉得除了A题外, ...

  6. [git] 细说commit (git add/commit/diff/rm/reset 以及 index 的概念)

    http://kasicass.blog.163.com/blog/static/39561920133294219374/ 创建测试仓库 $ git init $ echo "line o ...

  7. bzoj3289

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3289 题目大意:Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n ...

  8. HTML5学习笔记三:aside元素,time元素与微格式

    一.aside元素 表示当前页面或文章的附属信息部分,相关的引用,侧边栏,广告等有别于主要内容的部分:主要有一下两种用法: 1. 被包含在article元素中作为主要内容的附属信息部分,可以是与当前文 ...

  9. Swift去除两边的特定字符(空格或其它)

    var str_trim = "   !hi  !23   !" str_trim.stringByTrimmingCharactersInSet(NSCharacterSet.w ...

  10. 前端开发 Grunt 之 Connect详解

    在前端开发过程中,我们需要在开发过程中,将开发中的站点部署到服务器上,然后,在浏览器中查看实际的效果,在 Grunt 环境下,可以直接使用集成在 Grunt 中的 Connect 插件完成站点服务器的 ...