聚类系数(clustering coefficient)计算
转自http://blog.csdn.net/pennyliang/article/details/6838956
Clustering coefficient的定义有两种;全局的和局部的。
全局的算法基于triplet。triplet分为开放的triplet(open triplet)和封闭的triplet(closed triplet)两种(A triplet is three nodes that are connected by either two (open triplet) or three (closed triplet) undirected ties)。
可以用下面结构定义一个triplet
struct triplet { int key; set<int> pair;};
例如下图{1,(2,3)}构成的triplet是封闭的,{3,(4,5)}构成的triplet是开放的
全局的Clustering coefficient比较简单,公式如下:Clustering coefficient(global) = number of closed triplet / number of triplet(closed+open)
以上图为例:
closed triplet ={1,(2,3)},{2,(1,3)},{3,(1,2)}
all triplet = {1,(2,3)},{2,(1,3)},{3,(1,2)},{3,(2,4)},{3,(4,5)},{3,(1,5)},{3,(2,5)},{3,(1,4)}
number of closed triplet = 3
number of triplet = 8
number of triplet / number of triplet = 3/8
局部的Clustering coefficient的计算方法:局部计算是面向节点的,对于节点vi,找出其直接邻居节点集合Ni,计算Ni构成的网络中的边数K,除以Ni集合可能的边数|Ni|*(|Ni|-1)/2例如:1节点的邻居节点(2,3),他们之间构成的边有1条,可能构成的边1条,因此1/1=12节点的邻居节点(1,3),他们之间构成的边有1条,可能构成的边1条,因此1/1=13节点的邻居节点(1,2,4,5),他们之间构成的边有1条,可能构成的边(4*3)/2条,因此1/6=1/6
4节点的邻居节点(3),他们之间构成的边有0条,可能构成的边0条,因此0
5节点的邻居节点(3),他们之间构成的边有0条,可能构成的边0条,因此0
则,5个节点平均local Clustering coefficient = (1+1+1/6)/5=13/30
参考
1)http://en.wikipedia.org/wiki/Clustering_coefficient
2)<<Complex Network>> 3.2 properties of real-world networks p25
聚类系数(clustering coefficient)计算的更多相关文章
- 【聚类算法】谱聚类(Spectral Clustering)
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图 ...
- 谱聚类(Spectral Clustering)详解
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似 ...
- 相关系数之杰卡德相似系数(Jaccardsimilarity coefficient)
杰卡德相似系数(Jaccardsimilarity coefficient) (1)杰卡德相似系数 两个集合A和B交集元素的个数在A.B并集中所占的比例,称为这两个集合的杰卡德系数,用符号 J(A,B ...
- 聚类系数可变无标度网络模型Holme-Kim HK模型
# -*- coding: cp936 -*- import random import networkx as nx from networkx.generators.classic import ...
- [数据挖掘课程笔记]无监督学习——聚类(clustering)
什么是聚类(clustering) 个人理解:聚类就是将大量无标签的记录,根据它们的特点把它们分成簇,最后结果应当是相同簇之间相似性要尽可能大,不同簇之间相似性要尽可能小. 聚类方法的分类如下图所示: ...
- 如何选择kmeans中的k值——肘部法则–Elbow Method和轮廓系数–Silhouette Coefficient
肘部法则–Elbow Method 我们知道k-means是以最小化样本与质点平方误差作为目标函数,将每个簇的质点与簇内样本点的平方距离误差和称为畸变程度(distortions),那么,对于一个簇, ...
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- 各类聚类(clustering)算法初探
1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组 ...
- Python-层次聚类-Hierarchical clustering
层次聚类关键方法#coding:UTF-8#Hierarchical clustering 层次聚类from E_distance import Euclidean_distance from yez ...
随机推荐
- JS面向对象基础
以往写代码仅仅是为了实现特定的功能,后期维护或别人重用的时候,困难很大. Javascript作为完全面向对象的语言,要写出最优的代码,需要理解对象是如何工作的. 1. 对象是javasc ...
- HDU1251-统计难题(字典树)
统计难题 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131070/65535 K (Java/Others)Total Submi ...
- IWorkSpace接口介绍 1.打开各种数据库
IWorkspace接口提供访问工作空间的通用属性和方法,如它的连接属性,以及包含的数据集的方法. IWorkspace的成员字段: Members Description ConnectionP ...
- BNU OJ 51003 BQG's Confusing Sequence
二进制++高精度取模 #include<cstdio> #include<cstring> #include<algorithm> using namespace ...
- File和byte[]转换
http://blog.csdn.net/commonslok/article/details/9493531 public static byte[] File2byte(String filePa ...
- Identifying Dialogue Act Type
Natural Language Processing with Python Chapter 6.2 import nltk from nltk.corpus import nps_chat as ...
- ARM裸机开发中内存管理库RT_HEAP的使用
在使用arm芯片进行裸机开发的时候,很多时候都需要内存管理的功能,我们可以使用自己写的内存管理程序,也可以直接使用标准库,不过我一般比较喜欢标准库,速度快,今天就来说说在C语言环境下怎么样进行内存的动 ...
- 苹果应用商店AppStore审核中文指南
目录 1. 条款与条件2. 功能3. 元数据.评级与排名4. 位置5. 推送通知6. 游戏中心7. 广告8. 商标与商业外观9. 媒体内容10. 用户界面11. 购买与货币12. 抓取与聚合13. 设 ...
- laravel数据库迁移的migrate小解
当通过命令行:php artisan migrate:make create_authors_table --table=authors --create时,在 migration.php 中若Sch ...
- UITableView回调和table相关成员方法详解
http://blog.csdn.net/kingsley_cxz/article/details/9123959 1.UITableView的datasource实现: //回调获取每个sectio ...