使用order by和rownum时特别注意
起因
在项目中有用到某表作为数据来源,在页面以列表的形式显示。使用的数据库是Oracle,分页的时候使用到了rownum这个关键字。列表有排序功能,自然也用到了order by。接下来问题出现了,我在用order by查询数据库数据的时候显示的内容,和页面列表处显示的内容竟然不一致。心里想不明白,各种倒腾,终于弄明白了其中一二。
首先说结论:
当使用order by与rownum结合时,请一定保证order by后有一个能保证唯一的列
例如 select t.* from person t order by t.age,t.id; //id为主键,age可能重复
接下来验证之前的现象和我得出的结论:
1,首先创建表:
create table A_LXZ (id int ,name VARchar2(10),age int)
2,插入数据:
insert into A_LXZ(id,name,age)values(1,'a',3);
insert into A_LXZ(id,name,age)values(2,'b',4);
insert into A_LXZ(id,name,age)values(3,'c',5);
insert into A_LXZ(id,name,age)values(4,'d',6);
insert into A_LXZ(id,name,age)values(8,'h',7);
insert into A_LXZ(id,name,age)values(9,'i',7);
insert into A_LXZ(id,name,age)values(6,'f',7);
insert into A_LXZ(id,name,age)values(5,'e',7);
insert into A_LXZ(id,name,age)values(7,'g',7);
insert into A_LXZ(id,name,age)values(10,'j',8);
insert into A_LXZ(id,name,age)values(11,'k',9);
3,查询结果:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAANUAAAEBCAIAAABg+ndZAAAMZklEQVR4nO2dvXLrNhBG8ehsM5M2vftMqlRJY5Vsk16Vx00qjl+AKWiTFH4WILnYXQLfGc0dWYKA5eIIICFI1/3973/r7a9//vvl19/mH37/48/1vnPOOTcDwIqDf0AR+Ac0gX9Ak1L/AKgB/AOacPrnhmG5cQfJT6VQ6VMU94P3SHgnLNkq/OPfuU4teVVJfzhXUE+1d0g2wrDAqp1X4ERVd6Qd/xbz9v9eaesc2UEr6x9R8miBW3DAv3XO2vdfOIuFvRsts3+wZDYsmZKcG5YbVeb1KMI7YczRA49GOOffJJFnz8nXxgR9zD//xbseShULy5S8Kh5rvlfy/kUjpGMO/yXCk/GvsIx9js2/0UEifDB8iTecROLQm3+z76ty/7LDUsn8WyhWj/59v+aISUTvZh/0y9S5/mD0Lxtn6Bnh34mh9HbwnP/tT6HoMqlH1gcz4e5Gl3MdED3/o89ZS/zzAkvNs1H2Lzm0/tLAKSDWn4Em8K8W0XEOeMA/oAn8A5rAP6AJ/AOawD+gCfwDmsA/oAn8A5rAP6AJ/AOawD+gCfwDmsA/oAn8A5rAP6AJ/AOawD+gScY/3HCreqP8ewOgMpR/EwCVwfgHNMH4BzSh/AOgNhj/gCbwD2gC/4Am8A9oAv+AJvAPaAL/gCbwD2hyG//e3t6shXRTTGUS/nWHqUzCv+4wlUn41x2mMnnJv9QPukf5ecn7uUBNZe3WmMrkVf+87QzEg9M0Ofe+3E4Eaipr9hm/xtRTpjLJ4N/+kWEYUg/+vERi/IsOvf0wfo3jcxyfcQWzmRzLKA2GpEH/nHOPV7pScJVvHJ/RAtlMPp/Pbzu+YrdxHMfx+YxXfrS21vwbhmEYhsW5hcfjsTx4rt17scl3wb+JkOagfNnaWvNvEW4/4IWPnODopKNCiXxTcSYj0pySj67tqn/Tz5CzQjx4BQP+fVn2r1C+6ciZzIs0F+QjapNbf3nf3U5ED/8IyuWb2rv+KF9/IeoJ8cqU+Jd9D2SPyOM1V1/7P45WFdR2pi+n2MLKIfkmXH+kqqJFyWbNBZe9IUcVJDrhUD1ctX2rtlPwqHwTrj+I2ohRqsQ/74xz4cppqLXxb1Pta5xOyTc1dv3Be/1L+HF0/Fv9Y1kIXP0793IuxvG5V3C7X8G/6RbXH3bWX/ZD3Wrbcuf6ZbgR/yZPwePyTQc/SdqkuSZfqjbR9Zeqn/96Q93S6Ooix/h3ctplx1fwiHzT8c9/F2muyxetran9L+sQ6PnHtQZph03Bg/JNp/YfXJSPOPHl3/93bnkvS/n6X3ghTFzW3Jdl9DvxQvn9L880V/0Lx7PQv9Nj3h7sf+Gipf1X795t+vEv+tQVTGXt1pjKZJvjHyAwlUl8/6M7TGUS/nWHqUzCv+4wlcnb+AeapNQ/9f+oBLcmbwf8mwHgpop/wzAwhniltmmaZBoqQTEYU3nYc9i/kkl9OYBT5wP8tRW+9u3tjTdsa8EcbRr+8dQG/841Df8itYUf7GY/5z3X5WH96+PrS7wy0fBYggmb3gdQqWn4l6zNy29UjpXTXZ5ybn/f869eMGGFRIvwrxH/Vr3CByfSP97BONp0+CrepuFfsjYt/8I/o/6lZsCLwYSRePA2Df+StUnOv8TYtv+z9viX8s87BWRsGv4la1P0L9XfdAwswYRNey3yNg3/krVJ+kfcof0TDoa9afgXqc29MgUDQ8i5Lo+Oc9lZLwyPMZiS+4xNwz+e2s51eSUUg4F/J4F/Kk1b9G9olyXvRlAMxrR/hfAegAt+0K0Sj8dDpqESFIORbPrS/Js65V/8+2AC/jXc9FX/ogrCv+vAv1L/QgXP+eeck/EvVWFX/q19J9/0Sxgs/nkKnvBvqUTAv1TS557822cgzMYt/dsriPHvOmLBtOPfqmAz/hGDZW0EJGhq/m1v/FuLqSiI8U/0/M+gfzN5kl4b+Nf79W/D419T1x9TwOnr36iCNa5/C8979gM8YwwlYP0Fn39ogvXnq/tf4N8V4J+V/S+u4D/WArwY9a8Q9v0vn/OnwO3xeMg0ZDwY0/6pzL/Nd7mpYOAf/IN/sv7R6y+MyV0bors8VaYx/1J56Mu/vXahgowe7KsKq/W6vHn/iPch/IN/df1bjg7+JUWs4R/tVuif4iwM/6T9Iz7/FZAv6h9d/r7+0YfWo38p+dj9I2rrx7/P3egePQ/pyz9CPl7/6Kq68o84tB7921PVP/p9Hy0sL5+kfxj/8na21OX2g4F/8A/+Yf9Lxxj1rxD2/S+MtRFI5j2LYjCm/VOZf2VyAf/km4Z/G/BPvmkr/tH7XzgP+IfwqX7889ahJJv2I7HgX3b/AdvRmvneYZba/mk17Udiwb+UizXGv+3I4Z9G034kdvyTmX/nI797QkzWtRGbf4Wb9iOx45+18c+1+/sHe3D+Z90/FeBf79cfDftn5zrMhH8fVtdfWj3/m82sQ1nxj1ZTJhf9XP/aaRr+bcA/+aax/wVEMOpfIez7X5rfcmcqGNP+qcy/zXe5qWDgH/yDf91//3wtKfYGkPRvXX+Bf5tnMv4ReS+X9db+OXz/PDryCfjnyN+d6M2/VNPwz4R/xCR1d/8w//ryCfiXnXfKC9/dv+j9Tv37eP0JhNrjX+qtD//69U9m/COSDv/gX/wSuJJ/2fHvM3eedF//PrH+ckjKNrr8LsHAP/gH/7D/pWOM+lcI+/4XxtoIJPOeRTEY0/6pzL8yuYB/8k3Dvw34J9+0Cf/cK1X9W1sJn9rnPVVGjKoSeAmXbNqPxIh/MuOfw/cv53nOfbUe/sE/IQng37dhqcmX17/5yPdeiZICCEiQOrTu/PNsszb+qSgI/+Af/KuOCf+c7d9/gX8VY7Dg34e933/ZF1M5C4R/WH/WBOvP8E8T+If9L/1i1L9C2Pe/NL/lzlQwpv1TmX+b73JTwcA/+Af/LK2/MCZ3baiky8XUF/bP2//Su39O/PvnUbf6Gf8c+dXSfv1LPQv/aovYu38y8+8h/1LTdDP+pY6uR/+IsbDS+V/J+Af/4F+t61/4B/90xj/4B/8iClpbfyFKwr/W/KPVbKbLbxEM/IN/8A/7XzrGqH+FsO9/YayNQDLvWRSDMe2fyvwrkwv4J980/NuAf/JNm/DP245R1b+1lfCpaN6J8lWpKoGXcMmm/UiM+OfdqeSfI79SGeZdXruV2v55d8Sa9iOx4F8oYm3/ovTj3wr8y8jH7l/5/EsXro2ABKnjgn8V/YveX+ht/IN/8C8J/IN/8K86ffk3n/r9P5z/VYzBjn+ElzK5wPqzfNPwbwP+yTeN/S8gglH/CmHf/9L8ljtTwZj2T2X+bb7LTQUD/+Af/Gvx+0fevg87XS7sXzYPffnnpL5/SVfVlX9EQuAf/MPvv7Q+/5Z0eapkG/6lDq07/8TGPzr7j+D753Q/wT/4V9c/YrCEf/DvUsbLxz+VG/xr8Pzv8/jv72L868I/Ws1muvwWwcA/+Af/sP+lY4z6Vwj7/hfG2ggk855FMRjT/qnMvzK5gH/yTcO/Dfgn37QV/+j1F7ajfcV7th//7OTBhH/Z9We2ozXzuydZavvn3RFr2o+kK/+2w9bOexaZYNTz0KN/qQrDvBOTVG0EJCjPQ8UYLPj3Qf4XXFr+0ZNUbeCfzvWvHf/mn/GPt/VC4J/0+GfNPy3zFuBfg+sv38dc7J/WyV8YTA3gX6maMrkgxr8mrz8sNA3/NojrX5kA6GCabBr7X0AEo/4Vwr7/pfktd6aCMe2fyvzbfJebCgb+wT/4V9k/b6mFXn+5kk3v5WtDhV0uZr+wf3QeGvfPUy37+e/FLEdlCqvtZ/zL5qFx/wjneP0jcg3/4J91/1Iz1N39++x8/r2Lf9FiDfiH8Q/+wT/4B//69C9cbam0/hKe5WD9pSQPjft3CDEDuvKPbhr+KftHDA/wT80/7H/pBKP+FcK+/4WxNgLJvGdRDMa0fyrzr0wu4J980/BvA/7JN21i/S/1CIt/4ctTFe7zvlx8XGn3IrUlWC+w5Jt+CcPC/pfoIyz+hSkmxPLy3rB/jvxqVfv+2R//iGIywD/452a9r8DBP/jniMK1ETv/g392/VO8ChGTAP7Z9Y8uXxWB8c+7I9b0Sxi32P9y/vCCMaxw3WFfrL3zv7nz9ZdDiPU91p/lm4Z/G/BPvmnsfwERjPoHAC/wD2gC/4Am8A9oAv+AJvAPaAL/gCbwD2gC/4Am8A9oAv+AJvAPaAL/gCb/A1gPHg23vN++AAAAAElFTkSuQmCC" alt="" />
4,使用order by age查询结果
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAS0AAAD3CAIAAADHU5VEAAAQ50lEQVR4nO2dPY/cRhKG+Xf9LwZOjAMucHL55oYjR+dEm5kCFFiXSNZhfFqt1ydsRE98AC/gLJfTH9VNsrq7qvg+GAijGZJdbNYz1WQPZ7thGP7666/L5fL8/DyO47fffT8MwzAMd3d333zzTdd14zj+/P7553+9Pv75/vlvf//H+MIPP/40AgB20MFDAJrTwMPudJoevHtSgkKhTr1KvDvhvOI/8Zcsys6u0HLQm9CsHm47JDlr5eRl12Vsp1jSJCP0F5j1cxbYsKk97OyTzatX+6xpxeE8nAxc/runrW0ki1jSQ2LJtQusAh4Wgt/DeSy37HR/TOIfkuAyyxdzRok5Q7WuO00PapnbvfCf+DEHdzwY4Zj+sAi8u03CnIGrvxdjZE/pfffXCjYUPKDEirl74S3jD93X9sYYOax5B3rFh04RD/0d89+KaUk8CW48sEvpA5b2MBghHbP/LxFeHQ9zlgl2+Iajk3P6l3mUt+xFfMS+ajCfE1hmzKsoMi7N/ETxV3E+LAPhthuXJo9HvofJD/iccWnmUG2bhznL5ByvzLbSAud94ji9GvxveriUGs0x6ve6zXLnh6uMIo598kV3mTLXaRg9TMbp+0Z4uKG0EnsxZuwpvcyqtsbMQrqjHuZvJBZh8q39VD0/XJ4J5Iy5g6PwzMOWmabRLYTOD4PHhrAxGVhs/BlkuYr/FrUveRXA2fHgMrElY2vFNuK8SK/l70Wy3/z/OsvkBOmnK70jXjwrdMU8PmhMifIybhrDcwcAD/UQrHsHIaeE7tq+ni6FhwC0Bx4C0B54CEB74CEA7eHxEA888NjzYPDwDgCwDwYPBwDAPlAPAWgP6iEA7WHwEACwE9RDANoDDwFoDzwEoD3wEID2wEMA2gMPAWgPPASgPfAQgPZY8/Du7k5aSEpBTzKS7Ex4CMKgJxmBh2Aj6ElG4CHYCHpyLX3fX670zlsiPIz9MG6Ql1XebOiInB0GmaAnV7GUUK6H4y3Ei8MwdN2b6bGhO5A9q+i9jJlBT+bjSNj3Z2cBQR4uXzmdTrEXX1apUQ+Dpfg49Je+P/f9Oaxisif7PHKDYd3ajH9w2Q933/dfv35dSng+w8NsD7uuu7/lUCrOEvof3hPJnjyfz1c5LqFH308pmRkP79Zmupe/dUG8sodrwFcVrxLCw1wPT6fT6XSa3Ju4v7+fXtzWri5eJdzh4UDIs0kb3q1NFK2HU6iX1yCvEvp1Gx5GQ3IKoP/KBjYPn2qSI+GQ3ZMBeXZow7s1/7yD8UzkRsJrZ/ZBCYdUZ15DqeDh8FKCZogX9yDAw4tkDzMlHNaM8G/k2aEN+9bmIejSQ+cVgsvlEn2r7y9TfIvhfR+RcCA78xrSIGze4s3ikdzyqh12Qjqgh/kSDvqv02TmG7GFpYc3z6dCeLlcVUxJOMiph6vmLahwU/2Y4+GeYxPkNlUu2/ImsrWNWehPSKyScFB+nWY6jsvSN18LGL2/dRfbyDQRMT+5Pl9I+FoVSQkHOfWQ6/ww2YPpE2LvMqnPWhWJ9Fm1Ha6tXZVbqLhWwkH5dRpGD5cMw3DV73KV8NJfzn1CwkFUPVy+suc6Dd19OR46Z6QTe05TpdXDV+Uu/bBJwkH5dZqYcjs9XOj3KuE547ik6+Evv/zy/v37x8dHLR4O5PB1bT1cfl7un0icPdy2Ohd9f16q+Pq8gIeDyOs0vn5d6HrpBg/P5/NaCYecevj16/PDw8Ovv/6qyEOCVfVwtm56sv+yrRAPB0fF9RIOK7+Z9CrPPgm5ttaR10Xpd2fC9fBymaYIp0dmPOl6+Nunf3/58vj27Vs58xZFv1/qlL6p0dlJjnq4cTjKjqviGgmH9d8vneTZLyHL1op6OJ8r5pOuhx8/fnp4eCjtYT4vqxScx59LouMh1xymHF5VXCnhsOl73jslJE6M13660SNP+t2ZWTbHvbUSDjnl4ePHT58/l/UwyLbpwST584dd6PulliScmKrhhhXr329xTlEzmCE+f7gBKR769c33cHMNXIL7LbjAfU+MpD38/PlLaQ9vvyRzPfF7c3squOeccNUOg0zQk4ykPfzzz/8eth4CAvQkIyLqYU2QPVygJxmRcn5YDWQPF+hJRuAh2Ah6kpG0h7/99unh4YsZDwHQyDSPz+bhDz/+hAceeKx9dB+4PRwBACvp/vjj6fff//Pu3bv6Hp5OJ8Y92bO1YRjqNJRDw2BE9cOh6N6+ffvu3bsPHz7wepgzJp4OZM6SFbaWue7d3R1v2NKCWds0YKF7XjDCwxTw0GkasOD+SIwND/0vjia/R5oZiZP6/vbn1+dVnGWC4bEE4ze9DKBQ04CF7tvvvncec0fr9XDCybOgJDOZkfipH3Nv+dzxsFww/gaJFuGhHKgfmICHPkEPZ838FwfSQ97iHGzaX4u3acACPLySGUmOh/5/gx7GRoY7g/EjceBtGrAAD69kRkKkPuEh/WKJYJb/HW7dQz0UCDy8khlJpoexvKdjYAnGb9ppkbdpwEL3/S3LjoaHPjnXaYhKSCxcJxj2pgEL7pGYVVTtYXfL4BUKn8xIgvMWjmnJ0aAfHmMwOc8ZmwYs2PRwA5nrYh7faRqwAA+vZK4LD52mAQtFPDzZZco/ITQMBh7yUqoe5sB7IDvvD7kV4v7+vk5DOTQMRlQ/aKfGuDR2aWTy8JEJeHicpu1RycOgivBwP/DQBvU89FXc5mHXdXU8jG1QVP6VDmY+dvWbPhRVPXRU3ODhtJEKHsaSbxSWf0WDWfaA3xui+kE7tT1cqoh6uJ9qwcDDojTwcFbRjIdE8SxNBRkwLq0A6mG8a/I8nBdroiLqoQ2UnR8K9HAkL2aUBh7aANdL411z+HqI6zTVUDZ/OCtd2kOixBH1sL6KmLewAb5PsxpR+Yd5fBu0vw8YHu4BHtqgyO9iNPj+/+nUdd09qEuztDVHqd+nyYH9foun8anC4/7+vk5DwoOBh4wExnJ6x6XmU19UMPCQEXioKfVFBQMPGVHmIT1vwZhkc0N06seWMeZhrB+qpOgh0OThUj9fRUYflpvyN+ukvnkPic+jKil6COAhPEx3BTwsjSYPCQl5PaQd8z1sODqFhzbQ5yHx/dIKEgY9pJfX6yG9a/CQEWUexiRk95DY2nE8fFpU++D4vEqKHgJNHhIS8npIb+pQHhK7Bg8ZUebhkqIe0nUguHB9CWt6iHpYFE0eJi21lPryg4GHjMBDTakvKhh4yEgRD3G/xUGolqbmKVUPc2C/34JxawSi8q9hMKL6QTumxqVVekxW/sFDG8DD1YjKP3hoA2UexiYt2D2cG/LfEpV/RYNx5m9qNn00NHnYpb7nzdYpen4vsLSHrZo+Gpo8jDlZoh6+dhA8bNH00dDnYZ1x6bjm7zoQg9jSVBuXVm76aOjzUFo9nBew5+ES4eMC7XT/84CHNx2U7WET4KENSv1uYgkPZV6nMeyhoutV2tHk4aPUeQur54ejnvkb7XR3t4xKzg9Le0ggKv8wj28Dtx6O8DCFqPyDhzYo4iHutzgIrbLWHqXqYQ7s91uYv+VPVDDwkBFT41LzqS8qGHjICDzUlPqigoGHjKj0MDZvwZ5qwW0GU3+6uG/Pw3neAh4WRZ+HxPxhiRTMT317Hnb4HeFaKPNwMrCChx35e/JH8zDWdIuMtQk8ZPCQGLxp9xDj0jpo8nDWr7SHyfFY/sLaPQw+h4fsaPLw8fYnvUvXw1gpgIfwkB1lHtaph0TywUN4WAKtHpauh3PyJevhU+o8Sq+HT5i3qIVKD2Ny2kh9LcHAQ0bgoabUFxUMPGQE91uA7bTKWnuYut+CcWsEovKvYTCi+kE7psaldbpMVP7BQxto/d1EeDgBD22g6XeiuluKeji34r+1zL/YMtUoKoPT4TWbPhrKPKxTD5ebSuafbQ+dJ9WaPhrwMNQp8PAWeFgaZR7GBqW8Ho5rfreTWLICFWSI7Ro8ZESTh4510uphExXhoQ3gYahT4OECeFgBTR52sv++BTwEm9Hk4aO8v2+xXKzJWSI8tIEyD2lF63SZqPzDPL4N4OFqROUfPLRBEQ9xv8VBaJa25ihVD3Ngv9/C/C1/ooKBh4yYGpeaT31RwcBDRuChptQXFQw8ZESZh/S8BWOSzQ3lpH61j4DKHna3wMNyaPKwq/47wkHHjlMPO/InIeEhIyo9jL0LD0sLCQ8LoczDOuPSVR7Ghq9mPIztHTxkRJmHRG0sdH6YUw/hIdgJPFydhfAQHrIDDxPJBw/hYQU0efgoct6CWBIegkyUeUgraib1VQQDDxmBh5pSX1Qw8JAR3G8BttMsbc1h6n4Lxq0RiMq/hsGI6gftmBqX1ukyUfkHD20AD1cjKv/goQ00eeh8/b+ch05Dzrui8q9oMIr6QTvKPHSelPPQebJEVP6V9tB5Uq3po6HJQ1/IQh6+9o74/KsTjPx+0I4+D4MSlvAwtkE//4jBW2kqyJDfD2Az8DDeNXn5Rw/eSgMPbQAP412zsh7ytp4JPLQBPIx3zcp62AR4aAN4GO+abA9bnRz6wZQAHlZAn4eEn3W6jKiHJq/TCGzaHvBwNcT10joB0MEcoWl74H4LsJ1maWsOU/dbmL/lT1Qw8JARU+NS86kvKhh4yAg81JT6ooKBh4wo8zB2swW7h3NDmalPLK/XQ+d+C3hYDk0edrV+N7GL/2hiMPXr61fNQ7ofmqSsSeAhlX+ZqW/VQ3oH4SEjmjx8rDUuJQZjfurTCxvwMLZf8JARTR42qYfB86LMTIWHIBN4CA/hYXvgITyEh+3R5OGjyHkLnB+C/SjzkFbUTOqrCAYeMgIPNaW+qGDgISO43wJsp1namsPU/RaMWyMQlX8NgxHVD9oxNS6t02Wi8g8e2gAerkZU/sFDGyjzkJ63YOuUW5x3ReVf0WAU9YN2NHmYnMdn6xRyU6Lyr7SHzpNqTR8NeBjqFHh4CzwsDTwMdUp8MDbi97wrNn0cNHn4ePsnEMt5eNNBqfMievBWGnhoA2Ue1qmHNx2U4SFRPEsDD22gzMMu/qdIC50f5tfDJsBDG+jzsMK8xUj+RHfs/BD1EGxGmYe0onW6TFT+YR7fBvBwNaLyDx7aAPdbgO00S1tzmLrfwvwtf6KCgYeMmBqXmk99UcHAQ0bgoabUFxUMPGREuofOFAU9b7Enq5zV54YyU7/ap0BlD+l+aJKyJhHtoaNc8vulO7MtKJW/2ePUw2Q/NElZk4j2kHCP10Mi5+AhPKwAPGTwMDZy0+7hE8altYCHDB4GFzPgIephNeAhPISH7YGH8BAetke0h/4sRaF5C/8sCPMWOf3QJGVNItrDVVQz4VAe0k03SVmTwMNdqU+UC3gI8sH9FmA7zdLWHKbut2DcGoGo/GsYjKh+0I6pcWmdLhOVf/DQBvBwNaLyDx7aQLqHwXnCEh76q8c2uMy/6SLNnnZ3UlqG+UJU/aYPhWgP/anC2OThTg/9VCMEc/LPsIfLXfN3Ex4yItpD+fWQWKwO8NAG8PClI/Z5SIzfigIPbQAPXzpit4d7Wt9MtfNDeFgUePjSETs8bHi1ppoM8LAo8PClI3afHzZRsUI9dJ5Ua/pQiPZwLjXEKywe+jUt83r9cjF754cj5i1qIdrDVVRzQFT+YR7fBvBwNaLyDx7aAPdbgO00S1tztLzfAgAwAQ8BaA88BKA98BCA9sBDANoDDwFoDzwEoD3wEID2wEMA2gMPAWgPPASgPfAQgPbAQwDaAw8BaA88BKA98BCA9sBDANoDDwFoDzwEoD3wEID2/B9KPvr/wfZ6WgAAAABJRU5ErkJggg==" alt="" />
5,使用order by + rownum 获取前面的N条结果时,结果如下
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgQAAAEGCAIAAACVQBpXAAATtklEQVR4nO3dva7juB2GcV5G7nbdBkibfvrFVlslwGJdulogKdK5Ggyw2IrwDTCFZB6aXyJFiqTE5wdj4PGRJYrS+b+iLOuIf//3r+Xxr//89fd//FO9/fzLrwoAMAdBGAAACAMAAGEAACAMNgkhhBC9WwEAxyIMNlQJAyFuVRoDnAt7fonGvVctDMTttjxqtzCwuLc6cws3vnwp6Vu0cR+WOKip8a52N7r+r/Wk7u6xqbArzrLR99lR0XZsvuv1YaTfhFgflZdYd2Swb3ukvMsqAd7nvnclzDm69MKasuc3oUkfhqcp7bESmy10J9AZYE2wY1YlCvtk99tPcQ5zc6fa99ttz+RCYRBPAu/zCgu9ahgsvWn+u2/p84RBrR4rsdnbm2EQmTJ3giyEQQRhkMXsLiFu5kONEAb6tIDZ4+7QzN0e3mnMF1NOOISGjZvVTfdgcJrP9fI8WfganFZ/7e4arQ+t1pb3mNvmxB4LlXV3ms0XU5IgJebdtVCBNY2vu/su74K8GzTyxtS1cKZxz6Tl9oYKbFbvht7Yo/J/u3XP6H+Di07egpFlpezh7r/ebeo+sWebMjRPO02UeySaEQb2Oz87wjuZO03Ku/wN3fMLv13a3KU720aon34yp/TuiJE2hBakBuhDt7XlPea2MLHHWoZByjTeDt+xdTZTMHE+O9cifAIt69xaSsNCP8oaGWy2RM/fDYOUJ5tb0Lu4HXv45pPQ78VWdvqfl8s4TZR4XOC+xY1Qd87bDXUObbamv1n/BqcMbOavBVUKAzVYH3qbWt5j5iu5YbB5qJtymijx3MK+MEiZJmV7JS4rYQdLij2rV73/3R44bo1rQ63NDYOklQr/4mRtC+/voDtN6BV3WfFpzCeR3wvdY/r4TB+lDREG5mq4rfe+GOnEzRftaXadSUwaczUMA2sRHfswPE1pjylnBdPDYLOd7m4QCYMdg4zIWqiENY1Pk7Us5ZRa/xsLRgbpMwm1cPNH7/lnrEVqlrsH1Lu2RdbW2VxWrTBQ4U7rHwahY1j9ijlBaJrQK/rFjba+j1zEJ/3T3JV318vT2kX0/OBWs4PHKapfH6rDesxtTEqPWQ0LnQ7yUlv7RnBd0o6FrRX3ThOaMvSu0EysF+Pvctdis9/c/1rTpDTS3V0jK5J45jp3C1q7k9uw0OuRLRhfa+/ru9tj/lQFtnUkD3p+ZjCtlJqSMJO8rQKo5DDInu3ey3V2LYs9vxvCoLIqYYAdvCOASaQMJormP1+XYhNhsIHfGQAzIAwAAIQBAIAwAAAowgAAoAgDAIAiDAAAijAAACjCAACgCAMAgCIMAACKMAAAKMIAAKAIAwCAIgwAAIowAAAowgAAoOJhwIMHDx48JnkEw+AbAGAawTCQAIBpMDIAADAyAABERgYAgHkwMgAAhEcGvRsGAGiHMAAAEAYAAMIAACAJAwCAJAwAAJIwAADIs4TBt2/fRmvSSdGTFc3cmQ3W/ehFzLz5vAiDudCTFc3cmYTB9RAGc6EnK5q5MwmD6yEM5kJP5no8Hq/Vw/rRzJ1JGFzP/jAQOd5v+X1fK9lstdCTWcwkIAxMhMH1FIWB+hR5UUopxO/LY0cr2WxZHk7Z0ujJdFYSPB5Pa4KZO7N83YW4mY8jFhGXMn8hxP1+lwnHvunLzZq4pdIwMF+53W6hF99vaTEy2L2RruHxejyej8fTnwebPflIk9qYqnPT3I1bfXM/Ho8///zTTILnszQMrrRDVgkDXW12hEHuaYnc+S+FS8/BPczV7vd7+mYN7bcj7BhXCwMhxP3TCL3cjE4C9zB2sdmTz+dzrdAv3+PxWOpiYnvqzk1bdjPrl8p6pcTa4DUP1iQoCYPlt12ptaxUaWRfhWEghCgcGQghfvvtb0KI//3xh/ehi/i+VdBv1yODJbWUU2HMEre51uZeuuwSSolBytSlwuB2u91ut6VnF8umut08u9r1fCVBQRjISAXfVbvrzm3hHkxVPLxamvr6auSaBO4IJvE8w/ug8uvfEX7zC5WEQeLql4dBycjAeqNZTFwpa7TsBp/1cA2DZRAiDxjgZrlUGCwbzKoR5am7+2xGSylJIJN70lPBC2p33bmJT95XdvtIgrUzH94kkGnnMcwMKMmDg064abnbIvPMrWcQ0GBksEywbxXcMIhL6AShD1X1K2YYCCGUELeThoF8H4xbCbkjNuMGCIPXyGGQmAQy53f4o4IX1O7qcxPvsbYZBtYrEa/XK/ijx+O1tM842/YIJIGMdqZwRgNGA/fk1tKB788wPP+WdOky86y354aB+fHAe+1LPzM4NAyqE++xRSgM1KnDIN3vxmNHKwmDiPQkkOf/ADlxf4vMwQyDj+fLkOD1WvNgKwlkQrVyRwPKUDEPypMgdyaZn5fcTjcy+Gz/nj3NnY91EltcKQzUp8iL8flsdnH6ydkqm23xWa9e+4pXYG47S6F7zWhWEsiTf4D8/v35OsbWv1rugXdoJsu1ovrJ+txIgq/xQTQJZMLIQAh7ZGCFQe75Im8eVEmC3FmlV9J9DdtchDg+DNY96XZba7b7eJ/fSVkdY3f9Kvu5YVClsgVnPsJnBpvrlrLZ7ltyey1Sw7LmU2tua9038iA3CeTJP0CuGAYmKeWaAa81CV6P1/OxkQQybWSg88Bqp9Xg9E7YXb43Z5U1w9C6pw8CqowMlnLvpX+auwp6/rEYcCIhNB9zhu/LVfeHgTzy0vkhwkBufYyeEgbWpxSLko8uRhsZfNX910PuSgJ58g+QQ3Xf+2JoJm4YGBnwlQTPhO2SODLQ7RGBa9Vz98x9J3ZCM9l30ikSBsZ66d/Em66cdT8z2HxcLwzkYRcdjRIGsuCKYOmMDHRnVfnCgQ6DfW+v5fF4mnnw9fyAMJBDfoDsZoAust7XvbxZ8Hw+c5NA5o0M/AMC/UpuV+z4yNd9uzcJEvNg/JGBKL6aaJVwmihlC4p6YSCP+bbKQGEQkTUy0KVffyWk8KKmQcJAWnmQnwQy8wqKrwpelgS15mYV06yfav6Rweu1fJVgeSS2p9fIYFGyRSLj1MQx6yCfGXjDoNalpeJ2M8u933uazdWpGwZHaHdp6aH3JhKfg4BloToYaowMMs7nHMrOg5wkkPmX0xUegdad26FhoD8/SNdxZNBd+dVEhYtoEQZmuQ89tvY3c4afYSB0GAgrIjrlwXXuWiregwMrDAqHBQP6yoPMJJC7rq0uTIKSw0+Ld6dK/KmmK74VALlJINOOUY4bGfRV8j2DKosQJxwZmGewzcOC2+dSetWryn/PYN/XCDZlXRHsXkR0xl+2uGVcsOON7W+0+dzSsjEy/D2DHRKPUcyRQUhJM7oo/wZy+SI2yvRW32ZcWro1MkhZnaXKe48GBjk4KAoD90jfDYPdowETdy2tZea7LleXdYzSoD0tzfP3DGqleGJ0ddxVSk4T/W495DsMvD8qQQmrhZ6saObOnCcM5nHBkQEi6MmKZu5MwuB6+BvIc6EnK5q5MwmD6yEM5kJPVjRzZxIG10MYzIWerGjmziQMruccYQAAOFRSGPz8y688ePDgwePCj9Qw2PiaBADgzOqHQeK37BrMTUrZZkEpOjZmqH4AMKa8MEg58bRUk13nrOrPLfG93759q9vs0RqTu2gAsyEMpCQMnEUDmM2ZwsC9g8fmDT0SW2LVX3f++nX9Fmsab/OqNMZdtNmAgxYNYDZnCoOFVey8lVpLbIlbf0MBYD63wuC4xrgzjCyRMACwA2EgZSAMdK13X5TRMKg7TPEu2n1X3UUDmA1hIGVaGLj/9YZB6ERNYWPclljqLhrAbAgDKaP1NxIG8RePaIz5X/kZAIwMAJQgDKRMDoNQ8Y23oUpj3EVbS6y7aACzIQykTPsAOTImiEzcpjHVFw1gNmcKA/FJOofMrsSWeC8ttcr95skZt3kVG5PyvOKiAczmTGGwQ+J7+dKZtWgAsyEMpCQMnEUDmE1GGNyuaymCg+jYGMIAmNbody0VQlScW8T9fm+zoBQdGzNUPwBoZv9potBntksYfK+EMJhn0QA6KgoDbx4QBuUIAwCNlYaBmwf7wkAI0SYMQjMcqgge3Ri97dovGsCYKoSBlQc7wmCZSYMwCFVANVgRPLQxZg+4vTFUPwBopk4YmHnAyKBcs8YQBgAW1cJA58FlwiAyjDhag4rMaSIAJkYGK6sI6sm65AEjAwCNDfGZwYBhoKKfsh6NMADQGFcTreYZGfABMgDXEN8z0LlydBhEDvYjI4P2ecClpQAa4xvIq6GKIF86A9DYUXctJQxKEAYAGhv9rqVCiDva6rc3AujmBHct/aF+NHjc7/c2Cxq8MYQBMKcTnCa6fP0dqjGEATAnwqB//R2qMYQBMKchwiB+aWnFSqcXFK+/oWkuFgahfuizJwLoqn8YmBng5kHFomzOyp2tVX8vHwaRUOyzJwLoijCYMQyWtSMMAGj9wyCSBHXDIF7o3TDoeLKIMADQ2ChhELk3UYMk8IZBfPrzhkF81QgDYE5DhEEoCaqHQWRu84TBD2Pc4z1d1mdPBNBV/zCIJEHdMIjPaqowiKwaYQDMaYgwMB0aBvEjYu/E7ZOgZRgwMgCw6B8Gm1Fxpfo7fmMIA2BOhEH/+jtUYwgDYE7ctRS2fnsjgG5OcNfSinOLGKoIdmzMUP0AoJkTnCZq0xFDFUHCAEBjhMFqqCJIGABobIgwiN+1tObavrk/GqoIHtoY6xLblosGMKz+YbB5o7pqq2rMavAieHQY9Fo0gGH1D4NQMBwxMvhabcKgx6IBDGuUMGhzmki9T5K4r7tFMHJO6WjNThM1XjSAYY0SBqONDPQE1wsD0+AjJADNEAarUBh0QRgAaKx/GIz5AfKFw+BEH6QDaKZ/GHwf9dLSq35moM5ziS2AZoYIg3hOtOmIoYogXzoD0BhhsBqqCBIGABrjrqWw9dsbAXRzgruWXv5PCAzVGMIAmNMJThNdvv4O1RjCAJgTYdC//g7VGMIAmNNAYRC6tLR6vfPO01t/l+svrxcG+tJSwgDAYpQwiHzP4Ig6mF5/rxcGeo0IAwDaEGGwxECDMFjmRhjEF91nTwTQFWEQrL+RcylnDwNOEwGw9A8DnQFHh8Hm6ZH0ic8eBt7nhAEws/5h8N24N5H3RnV162DooJgwIAyAmQ0RBm1GBpEKSBgQBsDkxgqDo0cGugJujgx+bJ1bP28Y/ODSUgCOgcIglBDXqL9naQxhAMyJMOhff4dqDGEAzIm7lsLWb28E0M0J7lpacW4RQxXBjo0Zqh8ANHOC00RtOmKoIkgYAGiMMFgNVQQJAwCN9Q8D8enQMNBLcX9kFsHQNM0cWpGtDm+5aADDGiIM2owMzFltFsFrh4H1pNmiAQyLMFjNEwYaYQBAGyIMQueI6oaBSj5NFJ+ygQYVObRqhAEwp/5hYJX+0UYGXfKAMADQGGGwIgyaLRrAgPqHgRkAhIG3MUcgDACY+ofBd+NjA++Paq5tzqWly2RdPjkgDAA0NkQYxHOiTUcMVQT50hmAxgiD1VBFkDAA0Bh3LYWt394IoJsT3LX08n9CYKjGEAbAnE5wmujy9XeoxhAGwJwIg/71d6jGEAbAnIYIg/ilpRUrnV5QSv1tlkONw8C6aylhAECNEAY6A44OA3NW3iLYq/S3D4NQJxAGwLQGCoPQTwmDo1OBMAAwRBi0OU2UFQahs0mXCYPQ2hEGwJyGCIPIKOGgzwxSRgaEAYB5zBUGkVJIGBAGwMzmCoPIZ6eEAWEAzKx/GHwf8tLSyJSEAYDrGSIM4jlxmfp7isYQBsCcCIP+9XeoxhAGwJy4ayls/fZGAN2c4K6lFecWMVQR7NiYofoBQDMnOE3UpiOGKoKEAYDGCIPVUEWQMADQWP8wsG6ieWgY6KW4P/IWwcj0hzq0Ilsd3nLRAIY1RBhYTw4KAz2rxDBonwHa0WFgPWm2aADD6h8GbiocHQZe84SBRhgA0EYJA28SVA+D9NNE8YmP1qAih9aLMADmNFcYeJ8vZhsZEAYATITBijBotmgAAyIMVoRBs0UDGNBEYaByLi3lMwMAUxklDCIh0aYjhiqCfOkMQGOEwWqoIkgYAGiMu5bC1m9vBNDNCe5aevk/ITBUYwgDYE4nOE10+fo7VGMIA2BOhEH/+jtUYwgDYE5DhEHolqV1w8C6W+c49bdxGGz2Q589EUBX/cPAzAA3D+qGQa/6O1oYRDqEMADmRBhMFwbxDiEMgDn1D4PvPU4TpdTf0JTXCIPQqhEGwJz6h0GzkUG8FFr1N34uhTAAcDGEQTAMIsMIwgDAxUwUBuas0kcGXR6EAYDG+ofB91afGfwwjvdT6i8jAwDzGCIM4jlxmfp7isYQBsCcCIP+9XeoxhAGwJy4ayls/fZGAN3Uv2spAOB0CAMAAGEAACAMAACKMAAAKMIAAKAIAwCAIgwAAIowAAAowgAAoAgDAIAiDAAAijAAACjCAACgCAMAgCIMAACKMAAAKMIAAKAIAwCAIgwAAIowAAAowgAAoAgDAIAiDAAAijAAACjCAACgCAMAgCIMAACKMAAAKMIAAKAIAwCAIgwAAIowAAAowgAAoAgDAIAiDAAAijAAACjCAACgCAMAgCIMAACKMAAAKMIAAKAIAwCAIgwAAIowAAAowgAAoAgDAIAiDAAAijAAACjCAACgCAMAgCIMAACKMAAAKMIAAKAIAwCAIgwAAIowAAAowgAAoAgDAIAiDAAASqn/A7mUlsOm5XpiAAAAAElFTkSuQmCC" alt="" />
到这里,问题就出来了,ID为7的数据去了哪里? 本来想要得到的结果集是这样的:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAPYAAACHCAIAAACqDjP7AAAG5klEQVR4nO2dQbbjKAxFvfS/lMz79Kg3kL3UyTw7oAeucjkGFJzoSbJ492SQ+nFAwA1RDIdaSinPSNxut2ghXRT25MoSrRc4MFqwJ1eoeFrYkyvhFCdEl6Pi//z7Hx98ZHo0FC+EJOIrxX9+fhRD+aa05/NpU9EIjsGE6ocgdBUfyXLWPvooQdIvbfC9t9tNN+xowZytOj1UHIJjMGerTk9QxZdXDn9pvn0wkoNVdfnb37e3HK5phqcSTF31PgBQ1ekJqvjKYQib/m0MRlJb1dN6//ygOC6YukChRio+AhV/Mbj+41NUXPcrpVl1/S7dqtNDxRuK1/9sKt5LFb4Mpo7kgG7V6aHiz6a+dXXyx0A9mP0/n69acxY/BRVvK95TSo5BJZi66kONulWnh4q//z0nK24cjHrV6Qmq+PLKs5reagYjad40PEj8Nj2ow1MMZuS5YtXpCar4Bwy+l0s/h6rTQ8UhOAZztur0tBX/ycs6tEFwDGZ2xQfR7aNlWRRLE7jf7zYVjeAYTKh+wDGUqPR+4a2K/1KCis9TtSWjijctp+LfQ8XRnFC8tvwzxZdlsVG8V2CooUUHs42dfdVBOKf4wfIPFF8LMVC8N64l2NBCg9n3QN0bofoBx2nF95ZzFv8es2Co+AnFN8vTKC5M+WgMPGOiMvssvl3mYjlncTTWuXhAxYv4mwwNFUfDOyqZZ3H+3Cz298W3TwtacWFiFmZxe8t50xANVzed4dIPGoWdhlT8G6g4mkA7DZdluRNbvPWzINZOw0d5GDzu97tNRcGDmV1xl0QlvVWhgqHiVDx5MFQcorh801Bx/LaKZKt61yRTvNcPnupZYar43uzackXV9kXVxR6sSq+48FH3VM8KKp5c8bV1VNxIccFvXcVlfWvFHdMVKo7GQXFhj4qB303F5euvq7jcNCoOUbznt7riQmnzKP7YfUc1EzZP9axwy8WhistFTaW40DQqDlF8D1RxefZqXmzvt6XinMUtFH/7AchkVfxgqDgVTx7M1Ipzp+EkeOtnQaydhoqlCYQaWsdgQvUDjliJik2bQw0tFUdDxZ2h4mhi7TTUbNgf6pdCDS00mMPNU8uq4xBrG5Zaq65zuAJaca+q4+CWqEAVf2khFfeoOg4+27AMEpVy5iw/IatBY5aoGFcdB87imU/D2hP82wwHFfcxe4OKo+HPzcyKX+hnNw7eNHxzMRq0Z8zFufTjDJd+0FBxZ6g4Gu40nBpv/SyItdMw/RbtUMHMrrhLopLeqlDBUHEqnjwYKg5UvHfTUH0Um2U2rVrvrOVTfLtpSMXtFBfuiyNGd9yqfIovPCrI66ggA8UX8aCz2RTvVe2pnhVU/PfFKROV/U5DKm6h+GY2WvG3X9DjF19d8eZzKl4Kfo9KcxuW7uj2JjAqTsVLmemOChXPjZvi6Fl8G9e3s/jjXc56XcUfvGnIpR/3B5d+0FBxKp4c7jScGm/9LIi101CxNIFQQ+sYTKh+wBErUbFpc6ihpeJoqLgzVByN9eqmvPSj2bA/1C/th7Z3jRlQzw4dbll1HNwOmYDO4gsPmSilvDsFiYpTcQtsPKPidor3shRdxcuZ80OEKw0w8KzXNCqur/hB6GizuIvlVBwNFafiyXHLxal4MxgEVHzqMw33l7lk5FQcDZd+nOHSDxoq7gwVR8OdhlPjrZ8FsXYapt+iHSqY2RV3SVTSWxUqGCpOxZMHQ8Uhiss3DRXHb6toxCqzT5ex4oedhlQcrvhiflRQU995ZvFFPD+DigMV771KxdGuU3HnnYYuivfymTSK91pHxbGzeHOPiu64CjnooARUPAFpFRcGmIpT8VKur7jwS4uKU/FSZrppKFxJxRPApR/nB5d+0FBxKp4c7jScGm/9LIi101CxNIFQQ+sYTKh+wBErUbFpc6ihpeJoqLgzVByN2wJ+8764WqteObwaamihwVyoH3DE2mmo1qrrnOWHVvzwxKzqOPgkKmjF/zYv/NDaBBO/H3A4KN70G6F4r8B6aIVvczQGno33Q0qoOE/DSg4V/32li9/NYNSh4rMr7iX3ChVHQ8U9E/E6GARUfPaln329KX9uBqzaEipeiut/FEHF0XCn4dR462dBrJ2G6bdohwpmdsVdEpX0VoUKhopT8eTBUHGI4r1thuqKbxUNWiVcf13FDzsNqThc8cXqkImlf8JE0yp7s80Ul/vBUz0rkis+aFVWxeUGUnF9xX9ZJSrCt3NtlXxxAsV77aLiSWbxZg46KAEVTwAVp+LJoeJUPDk5c/HHR2caMhdPCZd+nB9c+kFDxal4crjTcGq89bMg1k5DxdIEQg2tYzCh+gFHrETFps2hhpaKo6HizlBxNP8DG6FyC/u5dEoAAAAASUVORK5CYII=" alt="" />
却得到了这样
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAMgAAACKCAIAAABgqpKuAAAGdklEQVR4nO2dTbLjKgyFWXqWknlXj94GspdU5tkBPUg9FzYgY1t/FudUBukbggT6ImGC0ynn/PWk5/PpzaWbynYmk7coAiwuAayVABaXABYUUFuw/vz9Dw88rj8aYGUIuqxLYD0eD0ZXrvT2/X51DI3I0Bk/89AFa6SO/jw7VYL5ext87/P55HXbmzNHTQOsHQGsc6bnAiuttflL8+3nYln3v/x9ecumTdM9Fmdq06UDQqbnAuunzcQ1o77odCx7MJXPN2DJOVN3SFgEWEMyBGvhpv7jlwSLN302Tdfv4jUNsPTAqv/ZBKtXjC46U3uyEa9pgCVbColsVP5TOmP1wNossxhNAyxVsHqBpH1gcaY2vbHIaxpg6S3eiVxFNNZxht30XGCltb7VR7nWuVg2M9NuAardY3Rm5Dmj6bnAOqFzsRSSoTMAi7k3gHXOtCpYj7j6TagTGTpjlrFGxOtZSomxN0Kv10vH0IgMnRE1PVQKe+vlH1hvJgGsSKZHwWqyBbCuC2A12DoHVkpJB6xeh1OBtcRO2fQxsDZsnQDr14kCWL3ZzDOBVc5APRu+wCrZQsa6LjVnbgDWwlYYsIj0Ji0FsO5RCuNlrKWZCVvIWDxrLIdgZXKFKy2AFfaqMHDGusfi/Vvp9FVhky2Jq8LBtUWZkhl9GNHs2w01VaczFsGc3DhLzXlVqGya4XQDwLqiucAy+Lb98UgpvSBdaYM1KPbTDZ/8UXi8Xi8dQ86dsQHLpBSGj6UrZwBWnFi6ciYUWPR2A+OsLYboWPbaBAOrNw9BwCp5qtliDHDZVd3tJpbhwSI+YAALYF2aiuBgEVTxgkVDU4NlWBABFhtYxHeFClQ1waLb3xcsemihwOpRxQ4W0ds8YH2KfNxcEgQBi6CKFyy6q6nAIoYWCqxSomDRn9RmY32qNMGKnLF2sYsUS//OAKw4sXTljAFYON0wibTBGhT76QbG3giJTuhRGTpjA5ZJKZQbZymApWAaYBkLYPGARZ9u4BzY/6pfmgeszbaLquns6UtotlHZ3fZ0VNJgmZnORqVQFKzVCAGWiels8SW0QinMR36zgKib0lIrhdqm8/QZK8W9E7pU5DWWc7BMBLAYwPK5eA8MluFFDLYbdhpLSzpjTbfGkgaL0DxXhYamAZax5gILpxsmkTZYg2I/3RD+CJQrZ2zAMimF4WPpyhmAFSeWrpwJCFZvu4F97pp9NmP5uyaPB9ay3RAfLGIfS2JOx2MZD6w02w2rCmAl8tby2cDqmQZYsmAR9eLuYE1RCheepMHaLQHjje8OVvN5NLDe65uhpTNW78MKsAKCpZOxiNkEWMHBks5Yy2zuZqzP3lrkvmB9ptpuIGiLEcu7OAOw4sTSlTMGYOF0wyTSBmtQ7KcbGHsjJDqhR2XojA1YJqVQbpylAJaCaYBlLIDFAFZaSxSsxUr9UjmhvTZqko3uWqqms6cft2UbFW7/yjnv3YsLsI6PCmCtFR+sXh3kBSsfuZ+OaKkgBbB6Q4sD1gYjbxnLhC2ABbBEBLAYwEq+f7sBYHEazXP/dkPZzGSlBbB4wKKZkxtnKWyQKpgGWMaaCyycbphE2mANiv10Q/gjUK6csQHLpBSGj6UrZwBWnFi6ciYUWPR2A+OsLYZGYqnGtDJYm9MNYcFK6jesNqGZJ2Ml8s62gGD1XgVY0oSFBUunFB4Cq1cxw4DVG10osIjsJbTGGslYAAtgMUwrwAJYDLMJsOKD9Xa53UC0BFi3AYtmLkwsb+EMwIoTS1fOGICF0w2TSBusQbGfbmDsjZDohB6VoTM2YJmUQrlxlgJYCqYBlrEAFgNYmy/bRcFarNQvNSeUaC8q2eiupWo6ezrdwDaqg79ZoM/TImmwNk/0TGdPv5rMNiqyq3nAWjQFWE2q2MEaL4V0Y2kpgNUbF8A6PqqD/3t77IwFsACWiAAWwBIRwLLZbsAaS8RoxgapqbBBCrBENBdYON0wibTBGhT76YbwR6BcOWMDlkkpDB9LV84ArDixdOVMKLB6Rxt4wdp8q+8nlspg7c5DELCS1u1fdFdTgUVMCMACWCITEgest0UpHIllr2UMsHpDiwOWWsaip/VV3bBKBwBgAayTYBHpDWABrPZUjmcskwfAYgDr7fK3G+jGAOseYNHMhYnlLZwBWHFi6coZA7BwumESaYMFQRcFsCARASxIRAALEhHAgkQEsCAR/QMqiGLgwvLK5wAAAABJRU5ErkJggg==" alt="" />
原因是:
当order by 排序后遇到相同的数据时,rownum的确定是无序排列(不稳定排序),
比如打印出rownum的值:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUoAAAEDCAIAAADcHNr2AAATYElEQVR4nO2dPY/jOhJF9dOdLrDp5pM/vOhFu8l06HQ376gxwOBFgv+AN5BbkvlRKlJk8ZK6B8LAY8tkqVTHpCTLPf3nf3+vy7//+/c//vmv5zd//PnXkxDSLRP1JmRUqDchw0K9CRkW6k1Ir0zTNE2TtAL1JqRTTPWebrdlyQz2MlRK1MGe/sZ5xn/gr1mVk6m4csk1GL3zcq15l6bgpgl9T9erxcP8+CusVjsrZDR1hpM5yX672UdYJS6k9yL2/l9Mqup9OIAHn4k9n9TUGah3HiX1XqeU+2z6UyM/18F19k9qJquaGeM03ZYlusJ3L8JWrCvs/w0G7D843or31ZTxKPPzPKrX4Kt5bmtm73LG9s/L2+6/K9hRsJyEN2q3wlvHP35JzcYzslt1O3q3flm9/Yj9l2K2Cw+CjQdiPd4TB3o/xc+joNjKrQi+KxbA+XgCzRrqrVknmKiM2jgsd2U7mVsRP2xJOqLRBKaM2Qmv5ORc+Qnkv8UfHv2WNRsjvnpz/g2vpkirsFE19Jbj0et9OBxpJufK+Wqe3pp1NNWi7Ov4c0H3QeZkNfjfY9OOZr56q2ORBFbIOPZOElXYqYdPuuuUOLWmLDJnzS70dh4I66yPBb0zJgLCVjxTMh9cJ6mvp3LYPzF66xuJRXj40nGzZSfnsU+gtfgO14k981TvD2X9fa8Tnkq4q4U+R4ODuTOwONt7LGHo2FuOR9Oy5jhwirB/i/+SgHK8cjY8uE5szdi7Yo04T8rv8rfiMG/+f511NEH6ssgb4sWzW7/G6N0Rh4M5GZWMwVDVbPqBTOkAqPfz+by228FR+iJoBvxT7cOk9NJ6EzI21JuQ60K9CRkW6k3IsFBvQoaFehMyLNSbkGGh3oQMC/UmZFioNyHDQr0JGRbqTciwUG9ChoV6EzIs1JuQYaHeRlz55nPSCupNyLAc6M2FC5d+F0nvH4SQnpH0ngkhPcPRm5Bh4ehNyLBIehNCuoajNyHDQr0JGRbqTciwUG9ChoV6EzIs1JuQYaHehAwL9SZkWLrR+8ePH2ghdQozWRDwZFLvy8FMFgQ8mdT7cjCTBQFPJvW+HMxkKvf7/fHi7rwEnsxTek8pfL/lZ16g4HnsCGYyib3bl9PbuUNFeHKe52n6uSwZgYLnEY27V4grzKQex+37/dNZATyZBfTeP3O73WJPfr/FYvQOThyuw/1xv3/e759hww8zedehDaZoayv+zi2+u+/3++/fv/duf36e1du4IAfUe5qmj3cuZfjqtj/ULBxm8vPz8+XcI7Tc70ulK+Mp29rKUmaO3s4zZ3gF/DL85fYZvRexn89lGmtUkKPpfbvdbrfbovTCx8fH8mRev32xuX1C71lwMsvGsq0tVB29l1AfW5Avt/1ZhiaZ32I/n8/tXxvDR9N78dnZ6+cH8Ow5pCUat2d1JgNOnrCxbGv+wVfBw7E3t1/JvAfdno+SuY7Yjtt5hmcc5pzVe/4eMFeEJ88AoPcDWW+l23PKfPLNyRM2Fm9tnYfv9XaeEXg8HtGX7vfHEt/uGOcecXsWk+mP2LsAcz6JlgR+nwsI/Oun1O7C2M/dot+kFeotoHd77v/UmrLehBb2er89Xobtx+Nl+JHbs2L09kfs/UWlgoYHPy5NL4wJ7RzuHv1BTt4uD/JegY+8coy0llnc/hWvJLfnzk+tLftxPw6u51n8wTHWyHKla33werxzexvDRbdnxejtGO7rnTpLDxoeyyHKsffhjjksysk7Ye6TarhQlUntlGrtZfLO8FS3585PrRXUe888zy+rHy+3H/fH5/3A7Vk3eq+GO3E6AeuT4Bgu5BBF7/nozKdGb+dof+HMKQC00Xsz+XGfs9yeOz+1FjP5pN47qze3PxX7RTl6r/FM3tx2HcaT8rAaLucQSO9ZnMOnjt77T/fzF8BXvfPeXor7/XNv+Pa4gt4z5Kk13+pVm+DzQYJ2f35+pro9p43e4UF7Sp+fLyz5lHOIpbdA0ui9yrw8OH8CH0Tv2TE83e058YtWm5Pn3C7VmqNH0qsr4dH78VgubS+LMp5Wo/fCYQ5NL4xV/c65M1Avna6qlxi9M+fkxXENT3F7Tv8epWaUMGutqt7rcbiehqO3hqHuGFsHcEfvUtfecdgMT3R7zroL4qTbwkmH1A/NYFEpX11ZHXaUTnV71o069UbvQ8rf7513WfsQ/XXvKfSd85HcXljG7ow32t/k9HmEZTBz/Lp3BspRZz96y+NfWc7q7Y/Gvt7ZI/Ye3jFWCvB7GPsiadQxiMft99zk/KezzN96B186A4uyFMxkQcCTOeboTQSYyYKAJ5O/tXY5mMmCgCeTel8OZrIg4Mmk3peDmSwIeDK70ZsQkopW7z/+/IsLFy59LQl6B79tQwiBpYret9utYIhnWpvn2aYjDQ2DgcqDhu4CxiRZb82Mf0l3zrFChdaU7/3x40fZsNGCgcqDhtSAiQ/1fkG963WdR2rAxKczvf0vkx9+t1wZiVPWfvvr8+tbnHWC4RUJxu96H0DVroNtBnPi/CtEFdyD5wMmPp3pveBUQ9C9FWUkvlExpfeP/QKtFIzfoNBj1Tz42fD/1Tyg3gZQ7xfBsg4WtDMK+U/GIjkTTLAXh0pdZ+stC0+9DaDeLzR6CxXszzyDvZwJxo/EoV7XsU8WYaupNwLU+4VglKC3/GSNYPb/nd+9Mu7afzI4sAt6yzGnBkx8qPcLpd4xneQYigTjd+30WK/r/QPq3RHU+4Xm1JqmQFsFY9Z1kt7CA+ptQGd6T+84zwTfrowkdkFoFofx2StTOZ4zwWgeV+rayYDfi/8Z5+QnGLD/xjMBE5/O9M5A+V5+raVe13mkBkx8qPcL6l2v6zxSAyY+aXrfxmWpEhAaBgOVBw3UW6CDO8amyC+/F+fj48OmIw0Ng4HKg4buAjbj1OQ8djZr0furENT7Ol3n0V3AZpzVO2g49T4P9dbTXcBmFNDbNzxP72mabPSONQhVJbWDWfedfdfZdLHjoCijt2N4ht5LIwZ6x2r6CVYlVYPZZ8DPBlQeVnrZcVAU03tvOEfv85gF04vez052HBQl9V4NH0ZvYcSojUHJcnI+PBy9N5wqmXZ/t7VsABo4evtQ71RQjr0B9X6K559qQ719qHcqPHO+cZ3Ru8dTa0/qnQ7Kde/1k6K23sKALIze9obzwphDdwEjwG+tbUBVCb/Woqe7gM2oeMcY9T4D9dbTXcBmdHDH2DRNH4SItDMImj7uGPv1/GWwfHx82HQEHgxUHpQBF6y3kehjcn7BsqbeSQG3sQce6g1a1tQ7KeA29sCDord8YaxgKawdyWUdW8eyZA16OcwDziLvuDb2wAOh995q3/CCmu2b8pt1ynp4vTUfcyDL4Y5rYw881Dta1mPrvWwd9R4bCL0Ft8vqLZSIX9bCbNBgod5C2H7AbeyBB0hv4TvnBiXil/W6WhPDqzombxqs3sKOa2MPPCh6x9wurrfQ2nX0/rWbmxwepIAs8o5rYw88EHoLbpfVW27qUnoLmwao9+GOa2MPPCh676mqt37UGvvYe7+NTbrOiFPYcW3sgQdC70P5RzIKPxioPCgDbmMPPNQbtKypd1LAbeyBh3eMkRFoZxA0fdwxVrA1AagqaRgMVB40dBewGX1Mzm1yAVUl1FtPdwGbQb03oKqEeuvpLmAzUPSOXRUrrvfakf8SVJVUDca5zmTZdTa97DgoIPSejm4pKba1/fwAcG29W3WdR0c7DgoIvWOq1xi9ty3HrhLqHQN8x0EBpLfN5PyZ8re1hAlhbcwm58Zdn6G7gJsDpDfa6L2uMJ7ee7obDLsLuCHUeyOmdxOod4zuAm4IhN6Yp9YG1ru7M1XdBQwChN5fqBfGRj32fnZ4nam7gBFA0Vs23yYXUFXCr7Xo6S5gM6j3BlSVUG893QVsBu8YIyPQziBo+rhj7IL3OTcMBioPyoAL1ttI9DE5v2BZU++kgNvYAw/1Bi1r6p0UcBt74MHSO3ZhrHhBBNsMlvVyMaZJyVZtf73OZN/1ybCDAbexBx4gvYXr3jUqW1/W4+k9ib/xDKu3sOPa2AMPit6L2AZ6T+l/fGdgve27Phkz9U6CektlLcxgay+19e5uck69M4DQe7W6tt5Jk1J55dqL2ejtbx2g3oc7ro098EDo/fX+h0pqj96xgYt6G3R9JmZhx7WxBx4UvW1Gb6Gm/bKm3oALR+8k4PSuPXqvVaIpa/kYterCC2NC2H7AbeyBB0vvmPNjGNVLMFB5UAbcxh54qDdoWVPvpIDb2AMP7xgjI9DOIGj6uGOsYGsCUFXSMBioPGjoLmAz+pic2+QCqkqot57uAjaDem9AVQn11tNdwGZA6D29U1XvtRf/pX2VxNYxo2rJOgm37DqP7gIGAUVvm9F74g8hP5/Po7/QAGiLvC8AAwaBem9cR+8V6j02KHrHZuZl9X6m/Fy2sKYBBiUb2zRAW4SZ+RMyYBAg9HZkRhu9mxhOvWPw2FsP9d6g3mZdn4F664HQe8L+G2PUuzlJO46sQOj9hfc3xvarNTkCp94OPPbOAEVv2XybXEBVCb/Woqe7gM2g3htQVUK99XQXsBm8Y4yMQDuDoOnjjrEL3ufcMBioPCgDLlhvI9HH5PyCZU29kwJuYw881Bu0rKl3UsBt7IEHRW/5wljBUlg70pS12SeLJpgaSQimAlNvece1sQceCL0n8z9j8Av+B4Br6x1LAloelAG3sQceLL1jrxavkmChQJW1TTDd6R3LVRt74EHR22ZynqR3bCposxg4Fts6TL05Oc8ARW9hJK907K0Zvak3yHL4udzGHngup7dcJUoBDBbqHQuVeuu5nN7CSRrqbdb1mVCptx4Ivb8gL4wJaxos1NuPlsfeqaDoLZs/jFFdBAOVB2XAbeyBh3qDljX1Tgq4jT3w8I4xMgLtDIKmjzvGCrYmAFUlDYOByoOG7gI2o4/JuU0uoKqEeuvpLmAzqPcGVJVQbz3dBWwGhN7TO/X0djpyXoWqkqrBdJSHlVi0T9SAEUDR23lQT2/nwR6oKqmtt/PArOs8Jv4QchYQevueV9J722z4srYJBj8PC9Q7DyC9g27X0DvWoF8lwgy2NgYlq89Dc6h3HtR7w6kSeQZbG+rt0N3JAgSo90Zs9C7buxLqHYN666HeG7HRuwnU20GYTGEGjAD13vD1bnXg7QdTg+705oWxVID0FrS3yYUweg95ag2w6zy6C9gM6r0hnDm3CUAO5gpd59FdwGbwjjEyAu0MgqaPO8YueJ9zw2Cg8qAMuGC9jUQfk/MLljX1Tgq4jT3wUG/QsqbeSQG3sQceFL3Xk1i19V47Upa1sH7tkq3X+PSOZdeVAm5jDzwQek9WP4Q8xX8FOVjW9lYLwZS1JSkPzZfDgNvYA89F9VYaNare8gYC6n0YcBt74IHQ+8tqci5M8PyylleuvRg4FtsuWL2FgNvYAw+E3k1Gb80x59ijN/UeHuotlTX1hlqodyrUWypr6g21UO9UIPT+grwwxmNvtIV6p4Kit2y+TfVAlTW/1pIUcBt74KHeoGVNvZMCbmMPPLxjjIxAO4Og6eOOsYKtCUBVScNgoPKgobuAzehjcm6TC6gqod56ugvYDOq9AVUl1FtPdwGbgaK3fGGs2Na+47wKVSVVg+koDyuxaJ+oASMAoffh11qKba3YFFSV1NbbeWDWdR6T+LOWgAGDQL03oKrEJhjqPTaX0ztpjhdb0wCDko1tGqYtnJxnAKH31/uf+K6n99uWHw0C8gy2NtR7D0fvPFD0thm937ZcobcwYtSGeu+h3nmg6L1abXbsrR+9m0C991DvPID0Nrgw9kw8hOPojQOPvTNA0Vs23yYXUFXCr7Xo6S5gM6j3BlSVUG893QVsBu8YIyPQziBo+rhj7IL3OTcMBioPyoAL1ttI9DE5v2BZU++kgNvYAw/1Bi1r6p0UcBt74Gmmt3MNTL4wdmbfO29fO1KWtdmHiyaYgktqHuyXpB3Xxh542ujtmBx7fF5vpyBij6HK2iAY/Dyk7rg29sADMXrX01uoDMyytgmmizxQ7/NQb6msY7NBg4WTc+p9Hup9UNZD6s3R+yJQ74Oypt6tFup9Hup9UNbUu9VCvc/T8sy5Y7XzTBG9/SPM1GPOIfXOyIPxkrrj2tgDD7/WclDWo+qN2XV2wG3sgYd6h8taGCvsg7lO19kBt7EHHt4xRkagnUHQ9HHHWMHWBKCqpGEwUHnQ0F3AZvQxObfJBVSVUG893QVsBvXegKoS6q2nu4DNgLjuHXumiN7+22MN7qtkOa92pt+T1C7Z9dyhfddK8nYc2QNxx1jwmSJ6+xUseOtUycB6T/C/K3xmx5EVjt4b1Nugaz0cvc9DvTeCeguT2KpQb+p9Huq9EdP7TO/ZmB17U++Bod4bvt4NT7CZlSz1HhjqvRE79m5iuMHo7Tww61oJ9T5PH3eM5W+eNwILY7J/YWx/+J0dQx4XvzCWvePIHn6tZQOqSvi1Fj3dBWwG9d6AqhLqrae7gM3gHWNkBNoZBE2VO8YIIQhQb0KGhXoTMizUm5Bhod6EDAv1JmRYqDchw0K9CRkW6k3IsFBvQoaFehMyLNSbkGGh3oQMC/UmZFioNyHD8n8mQwtbM6AG+QAAAABJRU5ErkJggg==" alt="" />
可以看到id=7的rownum是9,所以我们获取rownum<=8时,是获取不到id=7的数据的,所以看到的和真正获取到的可能不一致.
由此得出结论,当我们使用order by和rownum的时候,请保证order by 后至少有一个列是具有唯一值的.
例如:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXIAAAEPCAIAAADQ+thBAAAT/UlEQVR4nO2du47rOrJA9elOLzDpzXc+mGg+4HTon+jo4gAnFPoHfAN1q2WSoopSkVUU14Kw4W1TYoliLZN6tKf/+df/vn7493/++wIAuMaEVgBAF7QCAMqgFQBQBq0AgDKXtDI9HsuiHdXdqNRQ0zTlP10I3olfxCWrcrEpRutyyZ113ggKo5VzuydZS9LRp8lv4y7UO/yH7RMXWG0SFDixqStcbJPTqzdTZwPQysm1jr6NH8G/PqmqlcMBS/KdvfeLNnUFtHKdXrWyDt23OxCPvuLdS5bZvimZFEhG5tP0WJbdAj+1ZPZiLbD9Nxlw/OJ4L96LCeMRts/rKE+Sn55zimSWlG+x7fv5fY/XSlaU7E6ZFaV7EZWJ54mlrfHaOayHBzr5qbzjXaz9dfYL+0ArcazxR3uWybxIbjwR3HEPONDKK+vBpFCEe5Fcay+A6/EkNttQK5IyyYY60TcOO7pwOyf3Yn96WDRzlAQmjfmoDavWfo6DSZDQefEqwZdJouJWkyBJg2Z2qoZW8vHItXL49SuZBAnnBee0Iikj6S3Cuo59JBPo3qnuoMBB/zwa6Qvz+YRWFGs/h+jcSpEgMp3p8M2wjMYpW2HnDkp2oZXgRabM+jqjlRMDn8xevEpaPlmmqK5XlDbpFS+MVuQb2Yvw8KP8puSrWw1Sfms5d25l7fSHZfbeeYn7gbDf/5RJD53CYilzJwcvwRdpsL/HyZ86t5KPR7JlyTx/2mG7SvxRBuH3c7DjyTJ7JffW2ttI8GZ+rXgvDtst/m9QRhJknCx7OxJ/R2YSJ99QJ2pPb+foazu91s1uhzvXCnADKn39npgwXqjLXe9FKx6PSjOSo5JBkAxwLm2/SZPeqffeSisA4AG0AgDKoBUAUAatAIAyaAUAlEErAKAMWgEAZdAKACiDVgBAGbQCAMqgFQBQBq0AgDJoBQCUQSsAoAxaAQBl0Eot7vTnMwCKQCsAoEyoFRYWFpaLy5tW/gAAXOZNKzMAwGUYrQCAMoxWAECZN60AAFyH0QoAKINWAEAZtAIAyqAVAFAGrQCAMmgFAJRBKwCgDFoBAGX8auXPnz/eQuoUWlKRkRtTvu9o5f7QkoqM3JhoBX6hJRUZuTHRCvxCS5byfD6/vnkGH43cmLW0MpXws8pftfcB8tCSRWydgla2VNTK653Mm/M8T9Nfy1J1H2Ce52eUACu0pJzAKc/nZ1Bg5Masq5XtO4/HY+/Nn1VajFaSA6VxeH49n5/P52faLIct+ZQhDUZ1ayvxwVU/3M/n859//tk65fPzqlbu1CHH0so0TR/v3OZASlidEn+1Lhy25Ofn53euf6WW53PJMGE8ultbWbpZoJXgnSt8B/xtlm+nXNHKIpTXaxm236FDDqSVx+PxeDwWlSx8fHwsb56rty9+nXJBK3PGBacsoLu1haqjlSXUr98gv50Sj6okjfkjlNfr9fvvDcwykFYWjwS97fqA5fRYvSUSp8zilky44IIFdLcWT3IVp71vTvluzGfSKfNRY64jlMAp58xSaTq5UnosKmpl/hkgrGTevIIDrXx51orQKXNJb3hzwQULqG9tne9stRK8k+Hr62v3o+fza4lvM5d87jhlzjZmPELZBHjGgEsD/pzrSfx7pUmXjRet7uIC81+bRR566T6MqRW5U+b+T9kK+1tmC1utvL1ehilfX99mOXLKLBitxCOU7UVSRbNcd0rpRrxcYM5s57BbyCex57pakvee/3UuDXa2djKp4ivHRU6ZOz9luxzH7ff+eh4tHgzsbWS5Yry++H69ccrvmCXrlFkwWgnMEmuldDaUNIuKU0o3Jf+mNzu3ctghDvdhii4AxZSaJZMNRdvR2tq3QTZmKXXK3PkpW0WtbJnn+dsmX99O+Xp+fT4PnDLLRiurWYI4g4DljXBaBIebKtrg3r5P02O7zLanbPPtK9FKcDZn4copHm+jlV+DfD3nU06ZOz9lu2eQi1rZ2OTXKZ+C4yIcrazxTNFYfh22FLXDuWnL3kbOTakyWtns12Oa7EYr6wZL92G7bjAwWb/Nrt/Asmrl3OpaPJ+fW7P8vq6gldnlKdvYJmu6Jt9PkrTK5+dnqVPmstFKepAylc+DFk6cZI1XTzpFaJY+Rit5ikYrq0SWF9cvSDnRyhyYpdwpc+GNob8uuOYUra0FaVn06Up6tPL1tdyasizCeKxGKwtXjkhm7CwcR1c8tzKXXGCu+kxQMDBZKl0VozFaKZitVCU0S4lT5vL7zS9+K+purapW1vMscgxHK+a4uMD8s0rF2+HWAUugFa17Z/zwa5ZCp8ynno676JQrX4kByU4l/HRldUegklKnzLJvu3qjFVua/r2Vc7elHFIw4ko9E9TjYcuzjFVOrNj+odvPI1oGM+/ft3IC4bfddrSS/97tiIpaiUcfsVZOj1C28ASzFiM/y69O0bddg3haUm8S9FewzD9aSX7UZh8gDy2pyMiNOdxoBTLQkoqM3Jj8LVv4hZZUZOTGRCvwCy2pyMiNiVbgF1pSkZEb8w5aAYBO2dXKv//zXxYWFpYTS04rybsDAQDy6Gjl8XgcF2qytXme21QkwTAYV+0gobuAIcOxViRTqeUwn5mEVdiacN0/f/7ohu0tGFftIKE0YHALWkEraAWU8a6V+GGfw2d/hJEE6RRvf31/XSUokwxPJZi46m0AVatObjPZJsG/maiSR/B6wOAW71pZCHphMudXhJHEmbynku3rODEqBRNvMFNj1XaIWyP+V/ICrYwDWnlLp2QiBd+68Zt7kVwJJllLQKWqT2slLxq0Mg5oJaeVTObEI/xkLVeCiSMJqFf1ntEye41WYAWtJDI5o5X8mzWC2f53fs/nxlXHbyYHMhmt5GMuDRjcglYOtLKXxvkYVIKJqw5qrFf19gVagVLQSu6UrSQxrIJpVnWRVjIv0Mo4eNfK9E7wTnJ1YSR7F1bn7LBljtIjH8+VYCSvK1UdtEBcS+zWoH2SAccrXgkY3OJdKycQrsvtcPWqPkdpwOAWtIJW0Aooc6CVx31ZeqcTDINx1Q4S0Ip/PD7BPO38YpM6Hx8fbSqSYBiMq3aQ0F3Ao1E2Cdo7S7po5f+UQCvjVH2O7gIejWKtJM2CVq6DVuR0F/BonNFKbJZzWpmmqY1W9jboqnfWDmY9du2rPk0XBw5iTmolMMsJrSwbaaCVvVx6OeudVYPZtkDcGq7aYaWXAwcx57WyNQujles0C6YXrbw6OXAQc0krq1luo5XMN2RtGqQKkyBoA6OVRDETszBaiUErnWJ2bsWhVl7Z85q1QSsxaKVTuBKUKHY/rfR4yvaFVrrF7L6V1VC1tZIZgGRGK+3NwgXmgO4ChhXusvUCt8PJ6S7g0dB8ghmtXAGtyOku4NHw+ATzNE0fAFnsUgaOcfoE89+vvxssHx8fbSpyHoyrdhAGrNjfQB2nk6AB0wmtFAVsky4gA63YJ4l5MK7aQRiwTbqADDOt5C8wK3bBtaJ8Ou2VaZkqDWo5bAc/S/7A2aQLyLDRytYmsVkU03u7qXizQTrdXisSvTpZDg+cTbqADLSSLtx+qZ3by96hFWiA8bmVBpOgva4Zp1Nm1N1gQSuZsOOAbdIFZFhqJfNMUIOuGafTWszELFVzO79rbrWSOXA26QIyLE/ZZj5q0DXjdLqxVv7ejMUOJ4NOlvyBs0kXkGF/bqWqVvKbGkormV1zqJXDA2eTLiDDTCtbqmpF/i1973Mr2300qfpEnJkDZ5MuIIPb4exTyDwYV+0gDNgmXUAGWrFPEvNgXLWDMGCbdAEZPMEMXWKXMnCM0yeYFbeWwVXvNAzGVTtI6C7g0XA6CWqz8656J1qR013Ao4FWvIBW5HQX8Gg4fYJZcw9/iD9y1TurBhNcr21Z9Wl6OXAQY387XPK+FbXd6+eHLGprxarqc3R04CDGfhJUVStvu+q7d6KVPZwfOIgxftSwwSToVfLbw5mBd22aTYIaV32F7gKGBUYriQL308qW7r78uwsY0EquQEvQyh7dBQycsk0Xbk+zcytdZGl3AcMWLjBLC9emdqp0d26lu4BhxX4SVFsrGVz1Tm6Hk9NdwKOBVryAVuR0F/Bo8AQzdIldysAxTp9gHvDvjBgG46odhAEr9jdQx+kkaMB0QitFAdukC8hAK/ZJYh6Mq3YQBmyTLiCDnx9LlGzmtcNgdFtgb9c8a2UvYJt0ARlOnwmqkVHydLqfVqbsb5W41UrmwNmkC8gw/vmxBlqZyn8k9MZaaV/1xZjRSo+glbDwLSdB04bGVV+J+W+00ifGzwTV1krR4D9fuPbSbLQS751DrRweOJt0ARn2zwTFZlEfrex9UaOVBlVfiTlz4GzSBWRwJShRBq34WRit9Ii9VmqPVtbeKUmn/DmIqgsXmDNhxwHbpAvI4HY4+8wxD8ZVOwgDtkkXkIFW7JPEPBhX7SAM2CZdQAZPMEOX2KUMHOP0CWbFrWVw1TsNg3HVDhK6C3g0nE6C2uy8q96JVuR0F/BooBUvoBU53QU8GmZ32eZvh1PbvXeCT131zqrBdNQOK3vRvrwGDCv2P+hRdbSS35Sr3llbK8GLZlWfY+IHPXoGrXihTTBoBRpgPwmqrZWisfReyQY0SJW9XfOZpUyC+sX+lG3Vcytvuzr8bzB3pBVGK12DVt4KZL4ha4NWtqCVrrE/t1L7SlDy9cLeaMUEtLIFrXSN/d9bSX6kuYfl51YYrXiAcyv9Yj8Jqq2VDK56J7fDyeku4NFAK15AK3K6C3g0eIIZusQuZeAYp08wD/h3RgyDcdUOwoAV+xuo43QSNGA6oZWigG3SBWSgFfskMQ/GVTsIA7ZJF5Dh9AKzYhdcKxKmU6Z87VSpt/HpnZZVVwrYJl1ABj8/li7ffqmtlaJ2MF8OA7ZJF5Bhf5dtG60IM/muWsnvoEOtHAZsky4gw+kTzIqdUj4JyheuvTTI7b39cquVTMA26QIy7EcrsVkqjVYk5xTuPVpBK9AGtCLqxw0WtFIUsE26gAy0IurHDRa0UhSwTbqADC4wJ0pybsXJglY6hdvh7JPHPBhX7SAM2CZdQAZasU8S82BctYMwYJt0ARk8wQxdYpcycIzTJ5gVt5bBVe80DMZVO0joLuDRcDoJarPzrnonWpHTXcCjgVa8gFbkdBfwaNjfvJ+8b0Vt994JPnXVO6sG01E7rOxF+/IaMKw4fYJZbff6+e3h2loJXjSr+hwTP+jRM8aToNpa+d1P9+nUJhj/7bCAVrrGUitJp9TQyt4G496ZmSnUpkGqyNvBHLTSNWglUay9U+JgatCRVl5ZxfsMGFbQSljSxCnJYNTpSysraKU70MpxsTaglYDM4NFnwLCCVt6KWZ1YiYOpQXda4QJzp3A73KYtsqcJGwczSNXn6C7g0UAr781x69GKw6rP0V3Ao8ETzNAldikDxzh9gnnAvzNiGIyrdhAGrNjfQB2nk6AB0wmtFAVsky4gA63YJ4l5MK7aQRiwTbqADP5E9lsx21Spt/HpnZZVVwrYJl1ABj/okS7cfqmtlcw++tRKvq1s0gVkoBVpV669tMlttAINYBIkKtlgaZDbe7vmUyv5A2eTLiCD0UqisIlZ0Io8bLTiHLSSKIxWXC1opTvQSqIwWjFfDg+cTbqADM6tJIqZnGFBK3G0nFvpFG6Hs88f82BctYMwYJt0ARloxT5JzINx1Q7CgG3SBWTwBDN0iV3KwDFOn2BW3FoGV73TMBhX7SChu4BHw+kkqM3Ou+qdaEVOdwGPBlrxAlqR013Ao+H0ArPmHv4QfxT3zmZGi6maKtM7Las+TdGBA1c4vR1Obff6+XG82loJXjSr+hzdBQxb0IoX2gTTS5bm+4DDgGELWnkrfNdJ0MLe3jnM0syU7eUyYNhif26lqlZehT/li1ac0NEwE2LsrwTV1srvrqIVtAJNsByttNFK5uQfWmlWdSlopWvsJ0HJjzT3UDxFz5RsAFoJ4NxKv9hPgmprJYOr3sntcHK6C3g00IoX0Iqc7gIeDZ5ghi6xSxk4xukTzAP+nRHDYFy1gzBgxf4G6jidBA2YTmilKGCbdAEZaMU+ScyDcdUOwoBt0gVktNNKcC05f4H5Sp8LVl8rEqZTM6lJglFcStuh/VJ04GzSBWQ00kpgkL3X17USdMS9167SqUEw/tuh9MDZpAvIsBmt1NNKpkf6TKc2wXTRDmjlNqCVcF0mQVYLWrkNaCW3esuF0QpauQ1oJbd6ywWtoJXbgFZyq7dc0ApauQ1NrwQFNgneUdFKfAah9JzCLbVyoh0aL6UHziZdQAa3wyX6t0lecTtcUcA26QIy0Mr368x3Y/tgxqn6dMA26QIyeIIZusQuZeAYp08wK24tg6veaRiMq3aQ0F3Ao+F0EtRm5131TrQip7uARwOteAGtyOku4NEwe4I5+Y6KVuLV9za47Z3L+dor9V6kdqqs56TbVy3k3IEDh9g8wZx8R0UrceZkfBH0zhtrZXL/+xhXDhx4g9HKcbE2DK6VF6OVG4FWwmKZyUJV0ApauQ1oJSxmNWZpdm4FrUBt0MpbMcMTt81SBa1AbdBKopiJWRqMVoIXzaoWglZug9MnmM/vTzTiyIxB4gvM29Mrp2M4x+AXmE8fOHAIt8N5gdvh5HQX8GigFS+gFTndBTwaPMEMXWKXMnCMzhPMAAAraAUAlEErAKAMWgEAZdAKACiDVgBAGbQCAMqgFQBQBq0AgDJoBQCUQSsAoAxaAQBl0AoAKINWAEAZtAIAyqAVAFAGrQCAMmgFAJRBKwCgDFoBAGXQCgAog1YAQBm0AgDKoBUAUAatAIAyaAUAlEErAKAMWgEAZf4fPgIKkijBkwEAAAAASUVORK5CYII=" alt="" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAl4AAAEBCAIAAAAmczxuAAAWeUlEQVR4nO3dva7rOnrGcV1GLtdtgLTpdz+YaqoEGJxVuhogKdKtauMAg6kE34BSyNYixQ+9lPjxkvr/IBz4eMnSK0riY8rW9vTf//uvdfqv//nXv//Hfy4ff/nr3xYAAO5nIhoBADARjQAAWIjGGqbp0boEAFVx1l/RvPWyReP0eKxT7goDq/vIs7SSxcv3ceU27FehhoofTu4ht/3v7kHeg/PQxaa42yHn3dhCjXCifz9x8Iy3ByPtNk3vqXgNeUeN5/aQ5FW7Lsn72PcqwZJLHlVnzo0qbRieR/s5Vm5/HbaPO8OWiLsZTizqiottcvrl1eK/glbvjM/1bPuFDBSN8Vz0Pi5SxqjRuLav+d8raz+to2iUt1hbRaPxcODofSb0fNKiriAaryMaNTCba5oe5rTojMbtEpa5D9yBvLuHvPOYT0oujoUuMhz29VubBuext8t94G6FtykiNYTW5S55e8ZbpLds7/8GKjm+UHPYYsL2cf/rLdh9cLwVxfZXKOTceQ6flOSi5KJZvMXM5+Pb7r7KuyLv4RR5oXQrnHnca86prbEEduvhjvb+VX7gnVj7Qf+T3rO551dw1eLjJ7Kumue76CKf7ILq9Tf3CdG4f6XdNN7Z3Hkkr/IXeqYDOo5Gd+3eI8x84D00IzWEVuQuOVTP4QNJJUumFjvXPocP5K1aaH/VjEbJPN6GOnFsHHb6wuWc3Irwpeakq9CSwqQ1H7Vh3rUnjRpDz7grSj2/Ftnx411dzfP96J2E/3EJCRdUvW8c3Cfdl7hvMdwlHxfqvPE8mv+x+29wzsCOd5+5GI2Lsjb0lnrYYpJOIbJRJaIxXo88Gg+HQZILqsLrYOeiUTKP5GgRrktweIveBOxa1fu/x5c0jq64SLbUnU0eqOfWnhqNoiaVnV+HR4K3/3HnCT1T6HzfWmx7p769X1caje8XpHTQkWY9fHI/z6mr8KIResVo9C7wdD2HTzrFSDqyoy2SnSq7ObuIxt2DyDzb40g0nhiARrZiSWl57zxJ61qcrt//wgujRvlCQhUe/im+KPnLr6w9KRql76tSzi93nsgzoXV5nyl3vocaTWM0et9fmM+YM4TmCT2zPXlQ6+d95WTb/pq68e52hd5DuW++hNG4mG+CNLXhciopJe2zOI3jbuPuefOvS7RVC+0vyedeU4D5Eu+RGdwW2Thpt+HeeUJzhl4VWsjuyfir3K04bDf3f3fzSIp0T5bQhrg9bOTEiTfUibV7C/AvPPH4ST2/QhseeT7+1wrneyQddX3WiCuu76dW+q0cFwmjMXmxZ7+EeWpdLY9ezp2GiEYUdOdz2zs6vAnJQPPS8qs06Z2PXlxHNAIAYCEaAQCwEI0AAFiIRgAALEQjAAAWohEAAAvRCACAhWgEAMBCNAIAYCEaAQCwEI0AAFiIRgAALEQjAAAWohEAAAvRCACAhWgEAMBCNAIAYCEaAQCwEI0AAFiIRgAALEQjAAAWohEAAAvRCACAhWgEAMBCNAIAYCEaAQCwEI0AAFiIRgAALEQjAAAWohEAAEssGpmYmJiYmG44BaPxFwAAtxSMxhkAgFti1AgAgIVRIwAAlmA0AgBwT4waAQCwEI0AAFiIRgAALEQjAAAWohEAAAvRCACAhWgEAMBCNAIAYOkjGn/9+qWtpE7RkhnduTErbHvpVdx59+EQ0XgvtGRGd25MohFjIxrvhZbM6M6NSTRibETjvdCSqZ7P5+vtufvTnRuTaMTYzkfjlOLzkj/OVclBnAstmcTMRaLRRDRibJeicbFFnpzneZr+WKcTVXIQJ3k6nfiGlpTb5eLz+b2b4c6NeX3bp+lhTiVWESdZ/jRNX19fs2AkIF9v0sxo5Wo0ms88Ho/Qk5+X1Bg1nj5kx/B8PZ/fz+e3Px0PW/IpIy0m69I27s7Nvrufz+c///lPMxe/v69G40gHZJZo3HqbE9GYeskqdflrx7UtwX3Tv/n6+pLv1tBxO8yBMYzRonGapi/brY65LRfdIc7qsCW/v7/fefXyTc/nmhLCevIubbMeZrsuZvfMFe+C3+n4zsUr0bj2fcvy7mSzFNnWxWicpuniqHGapr///d+mafq/f/zDO22Rdm4Ttpdvo8Y1wxenhzG7uMOtNo/S9ZBYlulu3VQXhorGx+PxeDzW42y1HriPh+fEG89PLl6IxjmSZ6eSLO/SVu4b7YxvvddSXz9FvnPRHd0Kr8h9Bhw//x2gH7wSjcLNvx6NV0aNuxeanYlLskXrYWD3h+9oXAeoc4GLHzhtqGhcD99dj3n9Hdnp6341SXJxFrekJ88uJFnepU027zOnWbn4bsynNxdn2RU/MxGvpGOhS9Ob1H2R+BmHZ4BYYdS4znBuE9xojBM0wrS9cd+eMaNxmqZlmh5Eow6XonH+DNR2755OvKWKUxCNL83RKMzFOaVHs/LsQpJlX9r0uSplRuPumYjX6xX80/P5Wuszrks/A7k4RxtzckaKRoFnUnxtwM9nn57/XmnSdeFJL0+NRvNjxc/WX/2ssWg0Zjd9xp2haFyIRk0q3bzxhzGdqJJojJDn4tz/13CEx1tkCWY0Wo/X4eLr9U7Ho1ycBX23O1JcDBnT8Xoupi4k8XPWR3ejRrv+M0eau5zdxz0T0ahYvZs3Iss5PODkH+pkOYhXdu/9OteVB5Z2MhjcuzKScnHu/Gs4n97kZ/y1dTTuoCy0kPVujO3B+7GRiz9jx2guzoJR4zTtR427aEy9supNxyy5mLooea6cK+xwFVP5aHwfSY/HO8Hc6XMlVLI5xuH6E4Kp0ZilZ4OEis8aD/e05CD+OpJ6DEV69KTl5FraOwWNdEzNxbnzr+FkjEbTPM/vRHy9c/H1fH0/D3Jxlo0at3Tc1bkrWN4Ip8PscFFJCwxtu3yAmGXUuIaf1/bX1E3Ylh8LRScgQ8sxF/i5IeR8NM63vzmtGhXROB99NUsSjbtPN1dXPvLUNmr8ScHXcz6Vi3PnX8MJpaD3ydBC3Gg0EvEnF78F+0U4atzqmQL3xqUemecugYYWcu7ybCQaje3azsTHliN5P2s8nMaLxpkvslahJRrnC3cgzc6ocTt0stzguEXjuZfn8nx+m+n487hANM4qv4bjJuIWOd7nvbzJ+P39nZqLc9qo0T9Y3J5JbYoTX5xxX+7NRWE66h81Tpe/ofomuKAq2YNTvmicR7k7VjNF0RiRNGrcgnC7IffiF2WVROO8S8f0XJwTv5X3k2fXcjHX0nbRkvTXjX/U+Hqtty6uk7CeVqPG1ZU9ErmGIbyeoeSzRm805rp5Y3o8zPDz+8xzuDl5oxGl1bt5o+i/oTrZA8R1pVtM5hg1Jlz5LGqfjim5OKd/Yf3i6CTv0opG4/a5o1zDUWNz17+henEVNaLRDL/QdHS8mQu0o3HaonHaBSbpqMA4v7wxfQaOu2i8OGRU6CcdE3NxPnUv18VcvDI02fEeVMK/brb828Vhai7Osnds5UaNbV25rzHLKqYOR43mZz3mm6SHvZbB+qtOZf69xnO3LR5KugPJ/WLqeMfZOmY88cL6PxbxfaRmMXP4vsYThO/YzFFjyJUymrj+r+FcX8VBaB21bcLNG0ejRsnmrJnnfW80wFul8VyKRncU6Ebj6ZGiiV/eyOXOv6OUXdI7tgr11HSf32vM9Z5GGOTjHSqdunJB9Y/dNH+i0funK+jQc6ElM7pzY94nGnFPA44aEUFLZnTnxiQaMbbMnzUWwkGcCy2Z0Z0bk2jE2IjGe6ElM7pzYxKNGBvReC+0ZEZ3bkyiEWPrIxoBAKhGFI1/+evfmJiYmJiYbjJJo/HgJlUAAEaRPxqF/+JDhaXN81xnRRINi1HVDhLdFQxgMGnRKLlEu3ZVZy7uFlia8LW/fv3KW7a2YlS1g0RqwQCQEdE4z0RjyVWfk1owAGTUUzS6/9Lg4T88KKxkFwnu8rfnt5fs5vGWl6UYd9VmAUVX7V2mt012/41U5d2D1wsGgIx6isbVrif15tZGWImbRqE4NB+7nXuhYtwFRtZYtB3c1nD/K3lANALQjGic50AkeMNgN/pxnwxVcqUY71p2Cq36dDTGw5JoBKAZ0TjPsmiM9P7u1ULvWq4U41ayU27VoVSObDXRCKBrROM8R9MoEo3xJ0sUY/7vbGdS5VW7T3oHlJFojNecWjAAZEQ0zrM4GkNRFK8hSzHuqndrLLdq8wHRCOAOiMZ5ln0NR9K5tyqm2qqTojHygGgEoFlP0TjZds94Xy6sJHTTwhwdPs5OFx+v50oxkseFVr1rAXct7vuDXft4C3ZfeKVgAMiop2g8Qfhabvkvt+pzUgsGgIyIxnkmGkuu+pzUggEgo4RofIxr7WGVaFiMqnaQIBoBlKD9lzemacq4tIivr686K5JoWIyqdpDormAA+p2/oBr65ssajb8zIRrvs+pzuisYgH6XotGbjkTjdUSjXHcFA9DvajS66XguGqdpqhONoQWq6mFLF7Ptu/qrPq2LHQdgDBmicZeOJ6JxXUiFaAzlwaKshy1ajNkCbmuoaodNLzsOwBjyRKOZjowar6tWTC/RuHSy4wCMIVs0buk4TDRGRiqlVejuuaAKACGMGt92Pew2W5N0ZNToIhoBVKPis0aF0bhEv6tSGtHoIhoBVMM3VN/uM2rs8Ws4C9EIoCIV9zVuKVs6GiMDwciosX46cvPGTncFA+ga/xrOm6oellv+5borGIB+pX55g2i8gmiU665gAPpp/+WNaZq+gKh2pw+AMXXwyxt/Ln9WmL6+vuqsSHkxqtpBWHDG4w0Ali4uqN4wEojGpILbnDoAxkU0aowEojGp4DanDoBxqYjG+M0bGbvRbUXxSAjNU7O7r7CWw3bQM8V3XJtTB8C42kejmYhuOmaMKHNR7mJ3kTB8NEreIiiZDndcm1MHwLiIRn8kjB2N69YRjQDg1T4aI7mYNxoj3asbCZEreBUmojFStltwm1MHwLi0RGPk31Ct0L26kbDN1iQdi+ZTfNPURmNkx7U5dQCMS0U0hnIxezRGlnafaPzTGBMfXlhWMsV3XJtTB8C42kdjJBfzRmN8UbeKxsimKYzGwx3X5tQBMC4V0WgqGo3y0dLYnzWa29hk1SfqjOy4NqcOgHG1j8bD4BwpjfQXo6odhAW3OXUAjIto1BgJRGNSwW1OHQDj4pc30L12pw+AMXXwyxsZlxahqodtWIyqdpDormAA+nVwQbVOQ6jqYYlGue4KBqAf0fimqoclGuW6KxiAfiqiMXTnRvZo3Fbk/klVD1u0mN29EDVXfVovOw7AGNpH43T0z4tn21RjUcojoXQ0tlr1OR3tOABjaB+NoZgsMWr82WzdPSzRGKJ8xwEYg5ZorHNBdflcmnOfd3vYyEW80qpdUK286iu6KxhAv7REo7ZR4zbDeNFo6m4Q1l3BAHpENL6ForEJojGku4IB9Kh9NOr8Gs7A0djdt1q6KxhA79pH42+tN2+M+lnj0uG9EN0VDKBrKqIxnpp1GkJVD8st/3LdFQxAP6LxTVUPSzTKdVcwAP345Q10r93pA2BMHfzyxg1/p7BhMaraQVhwxuMNAJYuLqjeMBKIxqSC25w6AMZFNGqMBKIxqeA2pw6AcSmKxtDNG9k7U+8yvZGw3jDQpLsvuvztXoj6q75YtrfgNqcOgHFpicbIfY0lUkEeCeNF47ZFfUVjZMe1OXUAjEtFNK6hWCEa16URja1WfbFmohFAHURjMBIiVx1LT6WjsbsLqkQjgJraR+OWiKWjMelCYnzm0lO1UaO7dQqj8XDHtTl1AIyrfTT+Nv4NVTcds48aQwMmorHCqq/UHNlxbU4dAONSEY11Ro2RPHAjgWhUODFqBFCHrmgsPWrcelhJJMQ/kys6cfNGpGy34DanDoBxKYrGUF6OkUa9FKOqHYQFtzl1AIyLaNQYCURjUsFtTh0A4+KXN9C9dqcPgDF18MsbGZcWoaqHbViMqnaQ6K5gAPp1cEG1TkOo6mGJRrnuCgagH9H4pqqHJRrluisYgH7to3GylYvG3Yp2f1XVwxYtpqN22ISqXbQWDKBrKqKxzqgxvihVPWzpaNw9qLbqc8w6e8lyAF0jGt9U9bB1iiEaAcBLRTSGrqZmj8ak63KhOSuo0N2HNk1n0nBBFUBN7aNxF4TlotHa7KPBR/yqY2lEo4lRI4DKiMY3NxojI5XSiEYT0QigsvbRaMZh6W+oeh+vQqPGJohGE9EIoLL20fjb+LjR+6ecW5v+WSOjRg34rBFATSqiMZ6adRpCVQ/LLf9y3RUMQD+i8U1VD0s0ynVXMAD9+OUNdK/d6QNgTB388sYNf6ewYTGq2kFYcMbjDQCWLi6o3jASiMakgtucOgDGRTRqjASiMangNqcOgHGpiMb4zRsZu9FtRcJIiMxfursvt/DJVnPVhQpuc+oAGFf7aNwSsXQ0bosSRmP9RIwUkzdpktqh+XRYcJtTB8C4FEVj6K/Ze1hhGo0ajfENVBiNhwW3OXUAjEtFNNa5oBq5KOdGQnzm0lOFfAptl9pojBTc5tQBMC4V0RgZQRYaNUo+Yxt71Eg0AkAI0RiMBKJR1UQ0AqiGaAxGAtGoaiIaAVTTPhp/q7x5g88atU1EI4BqVERjPDXr9LyqIoFb/pMKbnPqABgX0agxEojGpILbnDoAxsUvb6B77U4fAGPq4Jc3Mi4tQlUP27AYVe0g0V3BAPTr4IJqnYZQ1cMSjXLdFQxAP6LxTVUPSzTKdVcwAP3aR+PudxXKReNuRbu/quphixbTUTtsQtUuWgsG0DUV0bh7UC4adw9MqnrY0tG4e1Bt1eeYdfaS5QC61j4a3YwsFI0/26w+EuoUo78dVkQjgMq0RKM3F0tEY2iBbg8buepYWoXuXt4OzRGNACojGt92PWz8qmNpRONOdx+OAuga0fgWGjXmXbsQ0RhCNAKogGh8C40amyAadyKDeJ0FA+ga0fjmRmOrDxrdYkroLhq5eQNANVqiMRKZdRoiMmoc8ms4Cld9TncFA9CPaHyLfEO1TgHxYu6w6nO6KxiAfvzyBrrX7vQBMKYOfnnjhr9T2LAYVe0gLDjj8QYASxcXVG8YCURjUsFtTh0A4yIaNUYC0ZhUcJtTB8C4VETj9oWX0tG4rSgeCaF5anb35RY+2WquulDBbU4dAONqH41mIrrpmDGizEUdRsLY0RjZRp3RGG+rNqcOgHERjf5IGDga49tINAJA+2j8re+CanzOClOFfAptms5ojO+4NqcOgHG1j0blo8Ym6Ug0yssmGgFkRzT6I4Fo1DkRjQAqIBr9kUA06pkOd1ybUwfAuNpH4299nzWaszX5xJFodKvls0YA1aiIxnhqDpNGXRSjqh2EBbc5dQCMi2jUGAlEY1LBbU4dAOPilzfQvXanD4Ax5f/lDQAAukY0AgBgIRoBALAQjQAAWIhGAAAsRCMAABaiEQAAC9EIAICFaAQAwEI0AgBgIRoBALAQjQAAWIhGAAAsRCMAABaiEQAAC9EIAICFaAQAwEI0AgBgIRoBALAQjQAAWIhGAAAsRCMAABaiEQAAC9EIAICFaAQAwEI0AgBgIRoBALAQjQAAWIhGAAAsRCMAABaiEQAAC9EIAICFaAQAwEI0AgBgIRoBALAQjQAAWIhGAAAsRCMAABaiEQAAC9EIAICFaAQAwEI0AgBgIRoBALAQjQAAWP4f+z4nlRw/5S4AAAAASUVORK5CYII=" alt="" />
这样数据就能够保证查询与获取是一致的了.
使用场景:
解决查询列表的全部显示,与分页显示,显示的数据不一致.
使用order by和rownum时特别注意的更多相关文章
- selenium向IE的输入框中输入字符时特别慢
selenium向IE的输入框中输入字符时特别慢,需要去selenium官网下载32位的iedriver,替换掉64位的,即可解决.
- eclipse编辑jsp快捷键保存时特别卡的解决方法
今天eclipse用着用着的时候,每次编辑jsp页面快捷键保存的时候要等半天才保存好,特别的卡.搞的很蛋疼.上网搜了下有解决办法 Window -> Preference -> Gener ...
- 使用vs2010复制粘贴代码时特别卡用一段时间就特别卡重启也没用
vs2010编写代码一段时间后复制粘贴特别卡,下拉条也特别卡,这个状况困扰了我两个月,实在忍不住了,去网上搜了搜 有网友说是快捷键冲突,所以我就把其他程序结束了,结果莫名奇妙的瞬间就不卡了.最终弄明白 ...
- oracle中group by 和order by同时存在时
关键点:order by 的栏位必须在group by 中有:例如:select name from TABLE group by name ,id order by id asc
- Android中通过反射获取资源Id(特别用在自己定义一个工具将其打成.jar包时,特别注意资源的获取)
在将自己写的工具打成.jar包的时候,有时候会需要引用到res中的资源,这时候不能将资源一起打包,只能通过反射机制动态的获取资源. /** * 反射得到组件的id号 */ public static ...
- [转]oracle分页用两层循环还是三层循环?
select t2.* from --两层嵌套 (select t.* , rownum as row_numfrom t where rownum <=20) t2 where t2.row_ ...
- oracle_SQL中ROWID与ROWNUM的使用(转)
转自:http://www.360doc.com/content/12/0802/11/219024_227802569.shtml rownum: ROWNUM是对结果集加的一个伪列, 即先查到结果 ...
- oracle之rownum(伪列)
整理和学习了一下网上高手关于rownum的帖子: 参考资料: http://tech.ddvip.com/2008-10/122490439383296.html 和 http://tenn.jav ...
- MySQL 的 RowNum 实现
MySQL 的 RowNum 实现 MySQL 下面没有RowNum,排序后序号却无法得到,比较麻烦! 在网上找了再三,通过比较,确认了以下的方法是可行的 : rownum, CollectSn ,b ...
随机推荐
- 开玩笑Web它servlet(五岁以下儿童)---- 如何解决servlet线程安全问题
servlet默认值是安全线的存在,但说白,servlet安全线实际上是一个多线程线程安全问题.因为servlet它正好是一个多线程的安全问题出现. 每次通过浏览器http同意提交请求,将一个实例se ...
- android新浪分享实例
新浪分享比较简单,新浪有提供完整的demo. android实现新浪的分享功能,分3种分享情况: 纯文本的,带图片的,图片为本地图片(传入的是图片在手机的地址),第2种带图片的是,网络图片,图片地址为 ...
- hello MemSQL 入门安装演示样例
一,介绍 MemSQL号称世界上最快的分布式关系型数据库,兼容mysql但快30倍,能实现每秒150万次事务.原理是仅用内存并将SQL预编译为C++. 二,部署 官网下载地址:http://www.m ...
- Jetty:配置连接器
连接器配置概览 连接器用于接收网络连接,配置一个连接器须要配置: 1)连接器的网络參数(比如:port): 2)连接器使用的服务(比如:executors,schedulers). 3)为接收连 ...
- iOS 单元測试之XCTest具体解释(一)
原创blog,转载请注明出处 blog.csdn.net/hello_hwc 欢迎关注我的iOS-SDK具体解释专栏 http://blog.csdn.net/column/details/huang ...
- 静态网页VS动态网页
干<沙朗新闻发布系统>什么时候.我们已经建立的网页.html的,并且.aspx,第一次接触.我认为这些东西是一样的,因为它,在观看ASP.NET视频的时候.听见里面讲课的老师有提到了这两样 ...
- 【HDU】4888 Redraw Beautiful Drawings 网络流【推断解是否唯一】
传送门:pid=4888">[HDU]4888 Redraw Beautiful Drawings 题目分析: 比赛的时候看出是个网络流,可是没有敲出来.各种反面样例推倒自己(究其原因 ...
- Thinkphp中field和getField
在数据库查询操作中field和getField方法是使用最频繁的.可是两者是有一定差别的.在这里记录下. field方法是用于定义要查询的字段(支持字段排除). getField方法获取数据表中的某个 ...
- 《Android内核剖析》读书笔记 第13章 View工作原理【View重绘过程】
计算视图大小的过程(Measure) 视图大小,准确的来说应该是指视图的布局大小:我们在layout.xml中为每个UI控件设置的layout_width/layout_height两个属性被用来设置 ...
- LB 负载均衡的层次结构(转)
作为后端应用的开发者,我们经常开发.调试.测试完我们的应用并发布到生产环境,用户就可以直接访问到我们的应用了.但对于互联网应用,在你的应用和用户之间还隔着一层低调的或厚或薄的负载均衡层软件,它们不显山 ...