堆排序

堆是具有下列性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆(也叫最大堆);或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆(也叫最小堆)。

最小堆和最大堆如下图示:

可以发现:根结点一定是堆中所有结点最大(小)者。

堆排序的基本思想(以大顶堆为例):将待排序的序列构成一个大顶堆。此时,整个序列的最大值就是堆顶的根结点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的 n-1 个序列重新构成一个堆,这样就会得到 n 个元素中的次大值。如此反复执行,便能得到一个有序序列了。

堆排序的思想用例图解释如下:

1. 初始最小堆的建立过程(自下向上逐步调整为最小堆)

具体代码如下:

1、排序前的一些准备工作,建立合适的排序需要的结构。

/********* 排序用到的结构  头文件sort_struct.h ************/
#define MAXSIZE 100 //要排序数组个数最大值 class SqList{
public:
int r[MAXSIZE+1];
int length;
}; /* 交换L中数组r下标为i和j的值 */
void swap(SqList *L, int i, int j)
{
int temp = L->r[i];
L->r[i] = L->r[j];
L->r[j] = temp;
} /* 显示数组内容 */
void showSqList(SqList *L)
{
for(int i=1;i<=L->length;i++)
std::cout<<L->r[i]<<" ";
std::cout<<std::endl;
}

2、编写主文件,实现排序与测试。

/********* C++堆排序算法 ************/
#include<iostream>
#include<time.h>
#include"sort_struct.h"
using namespace std; /* 本函数调整L->r[s]的关键字,使L->r[s...m]成为一个大顶堆 */
void HeapAdjust(SqList *L,int s,int m)
{
int temp,j;
temp = L->r[s];
for(j=2*s;j<=m;j*=2) //沿关键字较大的孩子结点向下筛选
{
if(j<m && L->r[j]<L->r[j+1])
++j; //j为关键字中较大的孩子结点的下标
if(temp>=L->r[j]) //如果关键字均大于孩子结点,跳出
break;
L->r[s] = L->r[j]; //否则交换关键字与较大孩子结点的内容
s = j;
}
L->r[s] = temp; //完成插入
} /* 对顺序表L进行堆排序 */
void HeapSort(SqList *L)
{
int i;
for (i=L->length/2;i>0;i--) //把L中的r构建成一个大顶堆
HeapAdjust(L,i,L->length); for (i=L->length;i>1;i--)
{
swap(L,1,i); //将堆顶记录和当前未经排序子序列的最后一个记录交换
HeapAdjust(L,1,i-1); //将L->r[1...i-1]重新调整为大顶堆
}
} int main()
{
int num[] = {0,50,30,25,15,84,56,34,99,54,111,24,43,6,62,124};
SqList *L = new SqList;
L->length = sizeof(num)/sizeof(int)-1;
for(int i=1;i<=L->length;i++)
L->r[i] = num[i];
cout<<"排序前:";
showSqList(L);
clock_t start = clock();
HeapSort(L);
clock_t end = clock();
double time = ((double)(start-end)) / (double)CLOCKS_PER_SEC * 1000;
cout<<"排序后:";
showSqList(L);
cout<<"耗时:"<<time<<"ms"<<endl;
return 0;
}

运行结果如下:

由于待排序样本太少,耗时显示为0。

C++编程练习(13)----“排序算法 之 堆排序“的更多相关文章

  1. Java常见排序算法之堆排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  2. Java排序算法之堆排序

    堆的概念: 堆是一种完全二叉树,非叶子结点 i 要满足key[i]>key[i+1]&&key[i]>key[i+2](最大堆) 或者 key[i]<key[i+1] ...

  3. 排序算法之堆排序(Heapsort)解析

    一.堆排序的优缺点(pros and cons) (还是简单的说说这个,毕竟没有必要浪费时间去理解一个糟糕的的算法) 优点: 堆排序的效率与快排.归并相同,都达到了基于比较的排序算法效率的峰值(时间复 ...

  4. 《排序算法》——堆排序(大顶堆,小顶堆,Java)

    十大算法之堆排序: 堆的定义例如以下: n个元素的序列{k0,k1,...,ki,-,k(n-1)}当且仅当满足下关系时,称之为堆. " ki<=k2i,ki<=k2i+1;或k ...

  5. C++编程练习(16)----“排序算法 之 快速排序“

    快速排序 基本思想: 通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的. 算法介绍: 设要排序的 ...

  6. 数据结构与算法之PHP排序算法(堆排序)

    一.堆的定义 堆通常是一个可以被看做一棵树的数组对象,其任一非叶节点满足以下性质: 1)堆中某个节点的值总是不大于或不小于其父节点的值: 每个节点的值都大于或等于其左右子节点的值,称为大顶堆.即:ar ...

  7. 八大排序算法之七—堆排序(Heap Sort)

    堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素) ...

  8. Python 一网打尽<排序算法>之堆排序算法中的树

    本文从树数据结构说到二叉堆数据结构,再使用二叉堆的有序性对无序数列排序. 1. 树 树是最基本的数据结构,可以用树映射现实世界中一对多的群体关系.如公司的组织结构.网页中标签之间的关系.操作系统中文件 ...

  9. C++编程练习(15)----“排序算法 之 归并排序“

    归并排序 归并排序(Merging Sort)的原理: 假设初始序列含有 n 个记录,则可以看成是 n 个有序的子序列,每个子序列的长度为1,然后两两归并,得到 [n/2] ([ x ] 表示不小于 ...

随机推荐

  1. soot的安安装与使用

    soot 工具是一个可以分析多种源代码的工具,可以进行插桩,最新版本可对android apk文件,进行相应的分析以往可以直接在eclipse里面在线安装. soot(A framework for  ...

  2. bzoj4010: [HNOI2015]菜肴制作【拓扑排序】

    想到了一个分治方法,每一次尽量放小的那个,把它依赖的放在左边,不依赖的放在右边. TLE 80: #include <bits/stdc++.h> #define rep(i, a, b) ...

  3. 微信小程序之----底部菜单action-sheet

    action-sheet action-sheet是从底部弹出的选择菜单,子菜单通过action-sheet-item和action-sheet-cancel指定,action-sheet-item是 ...

  4. IOS9中联系人对象的使用及增删改查操作的函数封装

    之前克服重重困难把IOS9中新的类联系人搞明白了,现在把增删改查封装成了函数,如下: // // ViewController.m // IOS9中联系人CNContact的使用 // // Crea ...

  5. C语言-switch语句

    switch (表达式的值) { case 1: 语句1 break; case 2: 语句2 break; case 3: 语句3 break; case 4: 语句4 break; ...... ...

  6. android——网络操作(一)连接网络

    连接网络 一,包含许可 <uses-permissionandroid:name="android.permission.INTERNET"/> <uses-pe ...

  7. JAVA中用于处理字符串的“三兄弟”

    JAVA中用于处理字符串常用的有三个类:java.lang.String.java.lang.StringBuffer.java.lang.StringBuilder,这三者的共同之处都是final类 ...

  8. osgEarth编译(转载)

    osgEarth编译 osgEarth的编译需要osg和一些第三方插件库,我主要参考了cnblogs上的一篇博文,但是也不够详细,并且我是在已经编译好osg的情况下去编译osgEarth,所以期间也遇 ...

  9. 怎样看paper 最有效率

    thinking more after reading. Don't just read the papers.in addition, at begining, you'd better focus ...

  10. hive CliDriver 源码分析

    664行 CliDriver main启动 public static void main(String[] args) throws Exception { int ret = new CliDri ...