两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss。这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。两者的根本目的都是一样的。此外,根据需要,两个方法都可以增加不同的正则化项,如l1,l2等等。所以在很多实验中,两种算法的结果是很接近的。

但是逻辑回归相对来说模型更简单,好理解,实现起来,特别是大规模线性分类时比较方便。而SVM的理解和优化相对来说复杂一些。但是SVM的理论基础更加牢固,有一套结构化风险最小化的理论基础,虽然一般使用的人不太会去关注。还有很重要的一点,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算量。

在Andrew NG的课里讲到过:
1. 如果Feature的数量很大,跟样本数量差不多,这时候选用LR或者是Linear Kernel的SVM
2. 如果Feature的数量比较小,样本数量一般,不算大也不算小,选用SVM+Gaussian Kernel

3. 如果Feature的数量比较小,而样本数量很多,需要手工添加一些feature变成第一种情况


Linear SVM 和 LR 有什么异同?

他们都是线性分类器,模型求解的就是一个超平面(假设问题是2类分类);以下主要谈一谈 不同点。

Linear SVM直观上是trade-off两个量 
1)a large margin,就是两类之间可以画多宽的gap ;不妨说是正样本应该在分界平面向左gap/2(称正分界),负样本应该在分解平面向右gap/2(称负分界)(见下图)
2)L1 error penalty,对所有不满足上述条件的点做L1 penalty

可以看到,给定一个数据集,一旦完成Linear SVM的求解,所有数据点可以被归成两类
1)一类是落在对应分界平面外并被正确分类的点,比如落在正分界左侧的正样本或落在负分界右侧的负样本
2)第二类是落在gap里或被错误分类的点。
假设一个数据集已经被Linear SVM求解,那么往这个数据集里面增加或者删除更多的一类点并不会改变重新求解的Linear SVM平面。这就是它区分与LR的特点,下面我们在看看LR。

值得一提的是求解LR模型过程中,每一个数据点对分类平面都是有影响的,它的影响力远离它到分类平面的距离指数递减。换句话说,LR的解是受数据本身分布影响的。在实际应用中,如果数据维度很高,LR模型都会配合参数的L1 regularization。

要说有什么本质区别,那就是两个模型对数据和参数的敏感程度不同,Linear SVM比较依赖penalty的系数和数据表达空间的测度,而(带正则项的)LR比较依赖对参数做L1 regularization的系数。但是由于他们或多或少都是线性分类器,所以实际上对低维度数据overfitting的能力都比较有限,相比之下对高维度数据,LR的表现会更加稳定,为什么呢?

因为Linear SVM在计算margin有多“宽”的时候是依赖数据表达上的距离测度的,换句话说如果这个测度不好(badly scaled,这种情况在高维数据尤为显著),所求得的所谓Large margin就没有意义了,这个问题即使换用kernel trick(比如用Gaussian kernel)也无法完全避免。所以使用Linear SVM之前一般都需要先对数据做normalization,而求解LR(without regularization)时则不需要或者结果不敏感。

LR在NLP界还有另一个名字就是最大熵模型,当然我不准备花时间解释这个,有兴趣的可以看比如
http://www.win-vector.com/dfiles/LogisticRegressionMaxEnt.pdf
如果理解最大熵模型的内蕴,应该不难看出LR是不依赖数据的距离测度的。

总结一下

  • Linear SVM和LR都是线性分类器

  • Linear SVM不直接依赖数据分布,分类平面不受一类点影响;LR则受所有数据点的影响,如果数据不同类别strongly unbalance一般需要先对数据做balancing。

  • Linear SVM依赖数据表达的距离测度,所以需要对数据先做normalization;LR不受其影响

  • Linear SVM依赖penalty的系数,实验中需要做validation

  • Linear SVM和LR的performance都会收到outlier的影响,其敏感程度而言,谁更好很难下明确结论。

注:不带正则化的LR,其做normalization的目的是为了方便选择优化过程的起始值,不代表最后的解的performance会跟normalization相关,如果用最大熵模型解释,实际上优化目标是和距离测度无关的,而其线性约束是可以被放缩的(等式两边可同时乘以一个系数),所以做normalization只是为了求解优化模型过程中更容易选择初始值。初学者容易把模型的建立和模型的求解混淆。
注2:查阅了一下Linear SVM和LR在UCI数据集上的表现,在小规模数据集上,Linear SVM是要略好于LR的,但差别也不是特别大,而且Linear SVM的计算复杂度受数据量限制,对海量数据LR使用更加广泛。Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?


其实这两个分类器还是很类似的,都是在最大化两类点之间的距离,但是 LR 把所有点都纳入模型考量的范围了,而 SVM 则只看 support vectors, 也就是离分类平面最近的点。所以说 SVM 的优点就在于,通过忽略已经分类正确的点,最后训练出来的模型更加稳健,对 outlier 不敏感。

具体到 loss function 上来看, LR 用的是 log-loss, SVM 用的是 hinge-loss, 两者的相似之处在于 loss 在错误分类的时候都很大,但是对于正确分类的点,hinge-loss 就不管了,而 log-loss 还要考虑进去。此外因为 log-loss 在 mis-classified 的点上是指数级增长的,而 hinge-loss 是线性增长,所以 LR 在偶尔出现 mis-label 的情况下的表现会比较糟糕。

此外还有一点就是用 SVM 来预测概率意义不大,人家模型本身就不是基于概率的。LR 则是基于 log-likelihood ratio,方便给出概率,并且向 multi-class 的扩展更加直接。(SVM 做 multi-class 也不是不可以,但是 objective function 很乱,实践中一般直接用 one-vs-all)

另外 regularization 在这里没有区别,L1/L2 两个都能用,效果也差不多。Class imbalance 的话 SVM 一般用 weight 解决,LR 因为可以预测概率,所以也可以直接对最后的结果进行调整,取不同的阈值来达到理想的效果。

实践中 LR 的速度明显更快,维度小的时候 bias 小也不容易 overfit. 相反 Kernel SVM 在大规模数据集的情况下基本不实用,但是如果数据集本身比较小而且维度高的的话一般 SVM 表现更好。

SVM与LR的比较的更多相关文章

  1. SVM与LR的区别以及SVM的优缺点

    对于异常数据,SVM比LR更好 SVM的优缺点: 优点:1.提供非常精确的分类器 2.更少的过拟合(因为有L2正则化项0.5||w||2),对噪声数据更加鲁棒(因为损失函数的原因) 缺点:1.SVM是 ...

  2. Linear SVM和LR的区别和联系

    首先,SVM和LR(Logistic Regression)都是分类算法.SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一 ...

  3. kaggle 欺诈信用卡预测——不平衡训练样本的处理方法 综合结论就是:随机森林+过采样(直接复制或者smote后,黑白比例1:3 or 1:1)效果比较好!记得在smote前一定要先做标准化!!!其实随机森林对特征是否标准化无感,但是svm和LR就非常非常关键了

    先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No de ...

  4. SVM、LR、决策树的对比

    一.LR LR,DT,SVM都有自身的特性,首先来看一下LR,工业界最受青睐的机器学习算法,训练.预测的高效性能以及算法容易实现使其能轻松适应工业界的需求.LR还有个非常方便实用的额外功能就是它并不会 ...

  5. SVM 与 LR的异同

    LR & SVM 的区别 相同点 LR和SVM都是分类算法. 如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的. LR和SVM都是监督学习算法. LR和SVM ...

  6. [笔记]LR和SVM的相同和不同

    之前一篇博客中介绍了Logistics Regression的理论原理:http://www.cnblogs.com/bentuwuying/p/6616680.html. 在大大小小的面试过程中,经 ...

  7. LR与SVM的异同

    原文:http://blog.sina.com.cn/s/blog_818f5fde0102vvpy.html 在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SV ...

  8. 【SVM、决策树、adaboost、LR对比】

    一.SVM 1.应用场景: 文本和图像分类. 2.优点: 分类效果好:有效处理高维空间的数据:无局部最小值问题:不易过拟合(模型中含有L2正则项): 3.缺点: 样本数据量较大需要较长训练时间:噪声不 ...

  9. 机器学习-LR推导及与SVM的区别

    之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助. 1.逻辑斯谛分布 介绍逻辑斯谛回 ...

随机推荐

  1. HostingEnvironment RegisterObject和QueueBackgroundWorkItem

    其实网上关于HostingEnvironment 的RegisterObject和QueueBackgroundWorkItem文章已经很多了,典型是的 QueueBackgroundWorkItem ...

  2. Java入门第二季第一章类和对象知识点

    Java 中的 static 使用之静态方法 1. 静态方法中可以直接调用同类中的静态成员,但不能直接调用非静态成员.如: 如果希望在静态方法中调用非静态变量,可以通过创建类的对象,然后通过对象来访问 ...

  3. Windows Server 2003下配置IIS6.0+php5+MySql5+PHPMyAdmin环境

    配置环境: 操作系统:Windows Server 2003 sp2企业版 Web服务器:系统自带的IIS6.0 所需工具: PHP:php-5.2.12-Win32.zip(官方网址:http:// ...

  4. Java中修饰符

    下面这张图应该大家都见过,根据图表来记忆最好理解 范围 private friendly(默认) protected public 当前类 √ √ √ √ 当前包中的类   √ √ √ 当前包中的类, ...

  5. Intellij Idea + Maven + Git + Struts2 HelloWorld

    1.在intellij Idea上新建Maven项目,输入相应的groupId,artifactId,项目名称: 2.在项目的pom文件中,引入struts2的核心依赖struts2-core: &l ...

  6. 某种数列问题 (一场欢乐赛的T2)

    个人觉得挺难的一道DP题 不会 没有思路 于是去找的正解 于是.. #include <iostream> #include <cstring> #define Max 100 ...

  7. linux xfce4普通用户 mount usb提示: Not authorized to perform operation

    问题:xfce4下,USB 硬盘能自动挂载并显示,但是普通用户操作时,提示:Not authorized to perform operation. 时间:20160928 os:gentoo + x ...

  8. qwt的安装与使用

    qwt简介 QWT,全称是Qt Widgets for Technical Applications,是一个基于LGPL版权协议的开源项目, 可生成各种统计图. 具体介绍,可参看官方网址:http:/ ...

  9. php强制下载文件并显示原始文件名

    原来一直没有接触过,这几天一直在玩儿文件上传下载的东西.今天又遇到一个坑. 描述:文件上传至服务器后,如果是rar或则其他的非浏览器直接识别的格式,用户点击链接了后是可以直接就被下载下来的.那么如果上 ...

  10. 给Cygwin重新安装curl

    之前已经安装过了cygwin了,但是重装了系统了. 不过发现cygwin倒是还可以继续使用. 现在想要使用其中的curl工具. 但是却在cygwin安装目录 E:\dev_install_root\c ...