很好的文章,转自http://www.infoq.com/cn/articles/double-checked-locking-with-delay-initialization

在java程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化。此时程序员可能会采用延迟初始化。但要正确实现线程安全的延迟初始化需要一些技巧,否则很容易出现问题。比如,下面是非线程安全的延迟初始化对象的示例代码:

public class UnsafeLazyInitialization {
private static Instance instance;
public static Instance getInstance() {
if (instance == null) //1:A线程执行
instance = new Instance(); //2:B线程执行
return instance;
}
}

在UnsafeLazyInitialization中,假设A线程执行代码1的同时,B线程执行代码2。此时,线程A可能会看到instance引用的对象还没有完成初始化(出现这种情况的原因见后文的“问题的根源”)。

 

对于UnsafeLazyInitialization,我们可以对getInstance()做同步处理来实现线程安全的延迟初始化。示例代码如下:

public class SafeLazyInitialization {
private static Instance instance; public synchronized static Instance getInstance() {
if (instance == null)
instance = new Instance();
return instance;
}
}

由于对getInstance()做了同步处理,synchronized将导致性能开销。如果getInstance()被多个线程频繁的调用,将会导致程序执行性能的下降。反之,如果getInstance()不会被多个线程频繁的调用,那么这个延迟初始化方案将能提供令人满意的性能。

在早期的JVM中,synchronized(甚至是无竞争的synchronized)存在这巨大的性能开销。因此,人们想出了一个“聪明”的技巧:双重检查锁定(double-checked locking)。人们想通过双重检查锁定来降低同步的开销。下面是使用双重检查锁定来实现延迟初始化的示例代码:

public class DoubleCheckedLocking {                 //1
private static Instance instance; //2 public static Instance getInstance() { //3
if (instance == null) { //4:第一次检查
synchronized (DoubleCheckedLocking.class) { //5:加锁
if (instance == null) //6:第二次检查
instance = new Instance(); //7:问题的根源出在这里
} //8
} //9
return instance; //10
} //11
} //12

如上面代码所示,如果第一次检查instance不为null,那么就不需要执行下面的加锁和初始化操作。因此可以大幅降低synchronized带来的性能开销。上面代码表面上看起来,似乎两全其美:

  • 在多个线程试图在同一时间创建对象时,会通过加锁来保证只有一个线程能创建对象。
  • 在对象创建好之后,执行getInstance()将不需要获取锁,直接返回已创建好的对象。

双重检查锁定看起来似乎很完美,但这是一个错误的优化!在线程执行到第4行代码读取到instance不为null时,instance引用的对象有可能还没有完成初始化。

问题的根源

前面的双重检查锁定示例代码的第7行(instance = new Singleton();)创建一个对象。这一行代码可以分解为如下的三行伪代码:

memory = allocate();   //1:分配对象的内存空间
ctorInstance(memory); //2:初始化对象
instance = memory; //3:设置instance指向刚分配的内存地址

上面三行伪代码中的2和3之间,可能会被重排序(在一些JIT编译器上,这种重排序是真实发生的,详情见参考文献1的“Out-of-order writes”部分)。2和3之间重排序之后的执行时序如下:

memory = allocate();   //1:分配对象的内存空间
instance = memory; //3:设置instance指向刚分配的内存地址
//注意,此时对象还没有被初始化!
ctorInstance(memory); //2:初始化对象

根据《The Java Language Specification, Java SE 7 Edition》(后文简称为java语言规范),所有线程在执行java程序时必须要遵守intra-thread semantics。intra-thread semantics保证重排序不会改变单线程内的程序执行结果。换句话来说,intra-thread semantics允许那些在单线程内,不会改变单线程程序执行结果的重排序。上面三行伪代码的2和3之间虽然被重排序了,但这个重排序并不会违反intra-thread semantics。这个重排序在没有改变单线程程序的执行结果的前提下,可以提高程序的执行性能。

为了更好的理解intra-thread semantics,请看下面的示意图(假设一个线程A在构造对象后,立即访问这个对象):

如上图所示,只要保证2排在4的前面,即使2和3之间重排序了,也不会违反intra-thread semantics。

下面,再让我们看看多线程并发执行的时候的情况。请看下面的示意图:

由于单线程内要遵守intra-thread semantics,从而能保证A线程的程序执行结果不会被改变。但是当线程A和B按上图的时序执行时,B线程将看到一个还没有被初始化的对象。

※注:本文统一用红色的虚箭线标识错误的读操作,用绿色的虚箭线标识正确的读操作。

回到本文的主题,DoubleCheckedLocking示例代码的第7行(instance = new Singleton();)如果发生重排序,另一个并发执行的线程B就有可能在第4行判断instance不为null。线程B接下来将访问instance所引用的对象,但此时这个对象可能还没有被A线程初始化!下面是这个场景的具体执行时序:

时间

线程A

线程B

t1

A1:分配对象的内存空间

 

t2

A3:设置instance指向内存空间

 

t3

 

B1:判断instance是否为空

t4

 

B2:由于instance不为null,线程B将访问instance引用的对象

t5

A2:初始化对象

 

t6

A4:访问instance引用的对象

 

这里A2和A3虽然重排序了,但java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此线程A的intra-thread semantics没有改变。但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象。

在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化:

  1. 不允许2和3重排序;
  2. 允许2和3重排序,但不允许其他线程“看到”这个重排序。

后文介绍的两个解决方案,分别对应于上面这两点。

基于volatile的双重检查锁定的解决方案

对于前面的基于双重检查锁定来实现延迟初始化的方案(指DoubleCheckedLocking示例代码),我们只需要做一点小的修改(把instance声明为volatile型),就可以实现线程安全的延迟初始化。请看下面的示例代码:

public class SafeDoubleCheckedLocking {
private volatile static Instance instance; public static Instance getInstance() {
if (instance == null) {
synchronized (SafeDoubleCheckedLocking.class) {
if (instance == null)
instance = new Instance();//instance为volatile,现在没问题了
}
}
return instance;
}
}

注意,这个解决方案需要JDK5或更高版本(因为从JDK5开始使用新的JSR-133内存模型规范,这个规范增强了volatile的语义)。

当声明对象的引用为volatile后,“问题的根源”的三行伪代码中的2和3之间的重排序,在多线程环境中将会被禁止。上面示例代码将按如下的时序执行:

这个方案本质上是通过禁止上图中的2和3之间的重排序,来保证线程安全的延迟初始化。

基于类初始化的解决方案

JVM在类的初始化阶段(即在Class被加载后,且被线程使用之前),会执行类的初始化。在执行类的初始化期间,JVM会去获取一个锁。这个锁可以同步多个线程对同一个类的初始化。

基于这个特性,可以实现另一种线程安全的延迟初始化方案(这个方案被称之为Initialization On Demand Holder idiom):

public class InstanceFactory {
private static class InstanceHolder {
public static Instance instance = new Instance();
} public static Instance getInstance() {
return InstanceHolder.instance ; //这里将导致InstanceHolder类被初始化
}
}

假设两个线程并发执行getInstance(),下面是执行的示意图:

这个方案的实质是:允许“问题的根源”的三行伪代码中的2和3重排序,但不允许非构造线程(这里指线程B)“看到”这个重排序。

初始化一个类,包括执行这个类的静态初始化和初始化在这个类中声明的静态字段。根据java语言规范,在首次发生下列任意一种情况时,一个类或接口类型T将被立即初始化:

  • T是一个类,而且一个T类型的实例被创建;
  • T是一个类,且T中声明的一个静态方法被调用;
  • T中声明的一个静态字段被赋值;
  • T中声明的一个静态字段被使用,而且这个字段不是一个常量字段;
  • T是一个顶级类(top level class,见java语言规范的§7.6),而且一个断言语句嵌套在T内部被执行。

在InstanceFactory示例代码中,首次执行getInstance()的线程将导致InstanceHolder类被初始化(符合情况4)。

由于java语言是多线程的,多个线程可能在同一时间尝试去初始化同一个类或接口(比如这里多个线程可能在同一时刻调用getInstance()来初始化InstanceHolder类)。因此在java中初始化一个类或者接口时,需要做细致的同步处理。

Java语言规范规定,对于每一个类或接口C,都有一个唯一的初始化锁LC与之对应。从C到LC的映射,由JVM的具体实现去自由实现。JVM在类初始化期间会获取这个初始化锁,并且每个线程至少获取一次锁来确保这个类已经被初始化过了(事实上,java语言规范允许JVM的具体实现在这里做一些优化,见后文的说明)。

对于类或接口的初始化,java语言规范制定了精巧而复杂的类初始化处理过程。java初始化一个类或接口的处理过程如下(这里对类初始化处理过程的说明,省略了与本文无关的部分;同时为了更好的说明类初始化过程中的同步处理机制,笔者人为的把类初始化的处理过程分为了五个阶段):

第一阶段:通过在Class对象上同步(即获取Class对象的初始化锁),来控制类或接口的初始化。这个获取锁的线程会一直等待,直到当前线程能够获取到这个初始化锁。

假设Class对象当前还没有被初始化(初始化状态state此时被标记为state = noInitialization),且有两个线程A和B试图同时初始化这个Class对象。下面是对应的示意图:

下面是这个示意图的说明:

时间

线程A

线程B

t1

A1:尝试获取Class对象的初始化锁。这里假设线程A获取到了初始化锁

B1:尝试获取Class对象的初始化锁,由于线程A获取到了锁,线程B将一直等待获取初始化锁

t2

A2:线程A看到线程还未被初始化(因为读取到state == noInitialization),线程设置state = initializing

 

t3

A3:线程A释放初始化锁

 

第二阶段:线程A执行类的初始化,同时线程B在初始化锁对应的condition上等待:

下面是这个示意图的说明:

时间

线程A

线程B

t1

A1:执行类的静态初始化和初始化类中声明的静态字段

B1:获取到初始化锁

t2

 

B2:读取到state == initializing

t3

 

B3:释放初始化锁

t4

 

B4:在初始化锁的condition中等待

第三阶段:线程A设置state = initialized,然后唤醒在condition中等待的所有线程:

下面是这个示意图的说明:

时间

线程A

t1

A1:获取初始化锁

t2

A2:设置state = initialized

t3

A3:唤醒在condition中等待的所有线程

t4

A4:释放初始化锁

t5

A5:线程A的初始化处理过程完成

第四阶段:线程B结束类的初始化处理:

下面是这个示意图的说明:

时间

线程B

t1

B1:获取初始化锁

t2

B2:读取到state == initialized

t3

B3:释放初始化锁

t4

B4:线程B的类初始化处理过程完成

线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放初始化锁;线程B在第四阶段的B1获取同一个初始化锁,并在第四阶段的B4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:

这个happens-before关系将保证:线程A执行类的初始化时的写入操作(执行类的静态初始化和初始化类中声明的静态字段),线程B一定能看到。

第五阶段:线程C执行类的初始化的处理:

下面是这个示意图的说明:

时间

线程B

t1

C1:获取初始化锁

t2

C2:读取到state == initialized

t3

C3:释放初始化锁

t4

C4:线程C的类初始化处理过程完成

在第三阶段之后,类已经完成了初始化。因此线程C在第五阶段的类初始化处理过程相对简单一些(前面的线程A和B的类初始化处理过程都经历了两次锁获取-锁释放,而线程C的类初始化处理只需要经历一次锁获取-锁释放)。

线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放锁;线程C在第五阶段的C1获取同一个锁,并在在第五阶段的C4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:

这个happens-before关系将保证:线程A执行类的初始化时的写入操作,线程C一定能看到。

※注1:这里的condition和state标记是本文虚构出来的。Java语言规范并没有硬性规定一定要使用condition和state标记。JVM的具体实现只要实现类似功能即可。

※注2:Java语言规范允许Java的具体实现,优化类的初始化处理过程(对这里的第五阶段做优化),具体细节参见java语言规范的12.4.2章。

通过对比基于volatile的双重检查锁定的方案和基于类初始化的方案,我们会发现基于类初始化的方案的实现代码更简洁。但基于volatile的双重检查锁定的方案有一个额外的优势:除了可以对静态字段实现延迟初始化外,还可以对实例字段实现延迟初始化。

总结

延迟初始化降低了初始化类或创建实例的开销,但增加了访问被延迟初始化的字段的开销。在大多数时候,正常的初始化要优于延迟初始化。如果确实需要对实例字段使用线程安全的延迟初始化,请使用上面介绍的基于volatile的延迟初始化的方案;如果确实需要对静态字段使用线程安全的延迟初始化,请使用上面介绍的基于类初始化的方案。

参考文献

  1. Double-checked locking and the Singleton pattern
  2. The Java Language Specification, Java SE 7 Edition
  3. JSR-133: Java Memory Model and Thread Specification
  4. Java Concurrency in Practice
  5. Effective Java (2nd Edition)
  6. JSR 133 (Java Memory Model) FAQ
  7. The JSR-133 Cookbook for Compiler Writers
  8. Java theory and practice: Fixing the Java Memory Model, Part 2

双重检查锁定与延迟初始化(转自infoq)的更多相关文章

  1. volatile双重检查锁定与延迟初始化

    一.基本概念: 1.volatile是轻量级的synchronized,在多核处理器开发中保证了共享变量的“可见性”.可见性的意思是,当一个线程修改一个共享变量时,另一个线程能读到这个修改的值. 2. ...

  2. JAVA 双重检查锁定和延迟初始化

    双重检查锁定的由来在Java程序中,有时需要推迟一些高开销的对象的初始化操作,并且只有在真正使用到这个对象的时候,才进行初始化,此时,就需要延迟初始化技术.延迟初始化的正确实现是需要一些技巧的,否则容 ...

  3. 从学习“单例模式”学到的Java知识:双重检查锁和延迟初始化

    一切真是有缘,上午刚刚看完单例模式,还在为其中的代码块同步而兴奋,下午就遇见这篇文章:双重检查锁定与延迟初始化.我一看,文章开头语出惊人,说这是一种错误的优化,我说,难道上午学的东西下午就过时了吗?仔 ...

  4. Java盲点:双重检查锁定及单例模式

    尊重原创: http://gstarwd.iteye.com/blog/692937 2004 年 5 月 01 日 所有的编程语言都有一些共用的习语.了解和使用一些习语很有用,程序员们花费宝贵的时间 ...

  5. DCL,即Double Check Lock,中卫双重检查锁定。

    DCL,即Double Check Lock,中卫双重检查锁定. [Java并发编程]之十六:深入Java内存模型——happen-before规则及其对DCL的分析(含代码) 关于单例.关于DCL: ...

  6. 利用双重检查锁定和CAS算法:解决并发下数据库的一致性问题

    背景 ​ 最近有一个场景遇到了数据库的并发问题.现在先由我来抽象一下,去掉不必要的繁杂业务. ​ 数据库表book存储着每本书的阅读量,一开始数据库是空的,不存在任何的数据.当用户访问接口的时候,判断 ...

  7. Singleton(单例)模式和Double-Checked Locking(双重检查锁定)模式

    问题描述 现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能:在实际开发过程中,会专门有一个日志模块,负责写日志,由于在系统的任何地方,我们都有可能要调用日志模块中的函数,进 ...

  8. Singleton - 单例模式和Double-Checked Locking - 双重检查锁定模式

    问题描述 现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能:在实际开发过程中,会专门有一个日志模块,负责写日志,由于在系统的任何地方,我们都有可能要调用日志模块中的函数,进 ...

  9. 单例模式中用volatile和synchronized来满足双重检查锁机制

    背景:我们在实现单例模式的时候往往会忽略掉多线程的情况,就是写的代码在单线程的情况下是没问题的,但是一碰到多个线程的时候,由于代码没写好,就会引发很多问题,而且这些问题都是很隐蔽和很难排查的. 例子1 ...

随机推荐

  1. blur事件

    blur事件是在元素失去焦点的时候触发,那么失去焦点的前提便是获得焦点. 哪些元素可以获取焦点呢? 1.超链接 2.input button textarea (without disabled) 3 ...

  2. java反射机制(2)

    首先,我们在开始前提出一个问题: 1.在运行时,对于一个java类,能否知道属性和方法:能否去调用它的任意方法? 答案是肯定的. 本节所有目录如下: 什么是JAVA的反射机制 JDK中提供的Refle ...

  3. COM与.NET程序集导出和部署COM组件

    为了分布式和多客户端调用我们还需要将写好的COM组件发布到一台服务器上.这里我们将组件部署到操作系统的COM+应用程序中去.如果没此需要就可以导出后,在C++环境中调用COM了. 第一步:导出COM组 ...

  4. 实现ie6下的居中

    代码如下所示,转自 http://w3help.org/zh-cn/causes/RT8003 对于 text-align 的讨论. <div style="width:200px; ...

  5. 浅谈C/C++引用和指针的联系和区别

    为什么C/C++语言使用指针? 答案:①一方面,每一种编程语言都使用指针.不止C/C++使用指针. 每一种编程语言都使用指针.C++将指针暴露给了用户(程序员),而Java和C#等语言则将指针隐藏起来 ...

  6. Linux - CentOS6.5服务器搭建与初始化配置详解(下)

    传送带:Linux - CentOS6.5服务器搭建与初始化配置详解(上) 继续接着上面的安装,安装完后会出现下面界面 点击reboot重启 重启后可以看到下面的tty终端界面  因为这就是最小化安装 ...

  7. apt-get 依赖修复

    apt-get cleanapt-get update apt-get -f install dpkg --configure -a

  8. 一个forward_list C++primer

    #include<iostream> #include<forward_list> using namespace std; int main() { forward_list ...

  9. centos6.5中gitlab的搭建

    使用gitlab官网给的源码进行安装,步骤如下: Install a GitLab CE Omnibus package on CentOS 6 (and RedHat/Oracle/Scientif ...

  10. Razor Engine,动态脚本语言,mvc上的语法,适用于文件内容生成,静态网页生成等。

    https://razorengine.codeplex.com/ 下载并引用:razorengine.dll 代码里这样写,用mvc的人都会!Razor语法! string template = & ...