Description

There are n cities and m two-way roads in Berland, each road connects two cities. It is known that there is no more than one road connecting each pair of cities, and there is no road which connects the city with itself. It is possible that there is no way to get from one city to some other city using only these roads.

The road minister decided to make a reform in Berland and to orient all roads in the country, i.e. to make each road one-way. The minister wants to maximize the number of cities, for which the number of roads that begins in the city equals to the number of roads that ends in it.

Input

The first line contains a positive integer t (1 ≤ t ≤ 200) — the number of testsets in the input.

Each of the testsets is given in the following way. The first line contains two integers n and m (1 ≤ n ≤ 200, 0 ≤ m ≤ n·(n - 1) / 2) — the number of cities and the number of roads in Berland.

The next m lines contain the description of roads in Berland. Each line contains two integers u and v (1 ≤ u, v ≤ n) — the cities the corresponding road connects. It's guaranteed that there are no self-loops and multiple roads. It is possible that there is no way along roads between a pair of cities.

It is guaranteed that the total number of cities in all testset of input data doesn't exceed 200.

Pay attention that for hacks, you can only use tests consisting of one testset, so t should be equal to one.

Output

For each testset print the maximum number of such cities that the number of roads that begins in the city, is equal to the number of roads that ends in it.

In the next m lines print oriented roads. First print the number of the city where the road begins and then the number of the city where the road ends. If there are several answers, print any of them. It is allowed to print roads in each test in arbitrary order. Each road should be printed exactly once.

Example
Input
  1. 2
    5 5
    2 1
    4 5
    2 3
    1 3
    3 5
    7 2
    3 7
    4 2
Output
  1. 3
    1 3
    3 5
    5 4
    3 2
    2 1
    3
    2 4
    3 7

正解:构造+贪心

解题报告:

  这道题比赛的时候%王队的代码,结果王队写萎了一个地方,我不仅写萎了同一个地方,还自己弄出了一个新错误,直接FST。考虑我们希望使得s和t的度数尽可能小。那么显然,我们需要把不含s和t的边能连上的就连上,那么我们可以得到S、T和若干连通块。并且这些连通块之间没有边。我们考虑我们优先选择S、T和连通块相连,能连则连。

  其次我们考虑如果直接连接S和T,事实上是不划算的,因为如果把S和T分别和一个未被连入整体的连通块的话,同样减少一点度数,可以得到更优秀的答案(多连入了一个连通块)。所以我们接着考虑连接某个连通块,他与S、T都相连。需要注意:找到一个这样的连通块之后,我们只需要之后的对于这种连通块我们都只需要连上S或者T就可以了,显然选择度数比较多的那个会更优。最后我们再考虑S、T直接相连的情况。

  有很多细节,注意一下。

  1. //It is made by jump~
  2. #include <iostream>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include <cstdio>
  6. #include <cmath>
  7. #include <algorithm>
  8. #include <ctime>
  9. #include <vector>
  10. #include <queue>
  11. #include <map>
  12. #include <set>
  13. using namespace std;
  14. typedef long long LL;
  15. const int inf = (<<);
  16. const int MAXN = ;
  17. const int MAXM = ;
  18. int n,m,ecnt,s,t,ds,dt,root;
  19. int ans[MAXM],cnt,father[MAXN];
  20. bool use[MAXM];
  21. int ok[MAXM][],jilu[MAXN][];
  22. struct edge{
  23. int x,y;
  24. }e[MAXM];
  25. inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
  26. inline void rr(){ printf("No"); exit(); }
  27. inline int getint()
  28. {
  29. int w=,q=; char c=getchar();
  30. while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
  31. while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
  32. }
  33.  
  34. inline void work(){
  35. n=getint(); m=getint(); for(int i=;i<=m;i++) e[i].x=getint(),e[i].y=getint();
  36. s=getint(); t=getint(); ds=getint(); dt=getint(); int r1,r2; for(int i=;i<=n;i++) father[i]=i;
  37. for(int i=;i<=m;i++) {
  38. if(e[i].x==s || e[i].y==s) continue; if(e[i].x==t || e[i].y==t) continue;
  39. r1=find(e[i].x); r2=find(e[i].y);
  40. if(r1!=r2) { father[r1]=r2; ans[++cnt]=i; use[i]=; }
  41. }
  42. bool flag=false;
  43. for(int i=;i<=m;i++) {
  44. if(use[i]) continue; if((e[i].x==s && e[i].y==t) || (e[i].x==t && e[i].y==s) ) { flag=true; root=i; continue; }
  45. if(e[i].x==s) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
  46. if(e[i].y==s) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
  47. if(e[i].x==t) ok[find(e[i].y)][]=,jilu[find(e[i].y)][]=i;
  48. if(e[i].y==t) ok[find(e[i].x)][]=,jilu[find(e[i].x)][]=i;
  49. }
  50. for(int i=;i<=n;i++) {
  51. if(find(i)!=i) continue; if(i==s || i==t) continue;
  52. if(ok[i][]+ok[i][]==) rr();
  53. else if(ok[i][]+ok[i][]==) {
  54. if(ok[i][]) ds--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(s),r2=find(i),father[r2]=r1;
  55. else if(ok[i][]) dt--,ans[++cnt]=jilu[i][],use[jilu[i][]]=,r1=find(t),r2=find(i),father[r2]=r1;
  56. }
  57. }
  58. if(ds< || dt<) rr();
  59. for(int i=;i<=n;i++) {
  60. if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
  61. ds--; dt--; r1=find(s); r2=find(i); father[r2]=r1; r1=find(i); r2=find(t); father[r1]=r2;
  62. ans[++cnt]=jilu[i][]; ans[++cnt]=jilu[i][];
  63. use[jilu[i][]]=use[jilu[i][]]=;
  64. break;
  65. }
  66. if(ds< || dt<) rr();
  67. for(int i=;i<=n;i++) {
  68. if(find(i)!=i) continue; if(ok[i][]+ok[i][]<=) continue;
  69. if(find(i)==find(s)) continue;
  70. if(ds>dt) ds--,ans[++cnt]=jilu[i][];
  71. else dt--,ans[++cnt]=jilu[i][];
  72. }
  73. if(ds< || dt<) rr();
  74. if(find(s)!=find(t)) {
  75. if(flag) { ds--,dt--,ans[++cnt]=root; }
  76. else rr();
  77. }
  78. if(ds< || dt<) rr();
  79. printf("Yes\n");
  80. for(int i=;i<=cnt;i++) printf("%d %d\n",e[ans[i]].x,e[ans[i]].y);
  81. }
  82.  
  83. int main()
  84. {
  85. work();
  86. return ;
  87. }

codeforces 723F : st-Spanning Tree的更多相关文章

  1. Codeforces Edu3 E. Minimum spanning tree for each edge

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  2. AtCoder Regular Contest 093 E: Bichrome Spanning Tree(生成树)

    Bichrome Spanning Tree 题意: 给出一个n个点,m条边的无向连通图,现在要给每条边染色,可以染成黑色或者白色. 现在要求在染色完毕后,找出一个至少包含一条黑边和一条白边的最小生成 ...

  3. 【19.27%】【codeforces 618D】Hamiltonian Spanning Tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. codeforces 342E :Xenia and Tree

    Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...

  5. Codeforces 1682 D Circular Spanning Tree

    题意 1-n排列,构成一个圆:1-n每个点有个值0或者1,0代表点的度为偶数,1代表点的度为计数:询问能否构成一棵树,树的连边在圆内不会相交,在圆边上可以相交,可以则输出方案. 提示 1. 首先考虑什 ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

随机推荐

  1. JS给文本框赋值后,在页面后台取不到文本框值的解决方法

    转自:http://www.cnblogs.com/qiaohd/archive/2012/03/23/2413660.html (ReadOnly.disabled 都有可能造成取值取不到) 开发一 ...

  2. filestream read方法 循环读取固定文件

    1.循环读取啊,byte[]可以定义为1024或者2049等等,不要超过int的maxvalue就可以.然后取出来操作完再去取. FileStream stream = new FileStream( ...

  3. NET WebApi OWIN 实现 OAuth 2.0

    NET WebApi OWIN 实现 OAuth 2.0 OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和 ...

  4. 如何让jboss eap 6.2+ 的多个war应用共享 jar 包?

    weblogic有一个很贴心的功能,允许把多个war应用共同依赖的jar包,打包一个单独的war,以libary方式部署,然后各应用在weblogic.xml里声明引用该libary即可,这样可大大减 ...

  5. Spire.Doc组件读取与写入Word

    之前写了一篇开源组件DocX读写word的文章,当时时间比较匆忙选了这个组件,使用过程中还是有些不便,不能提前定义好模版,插入Form表单域进行替换.最近无意中发现Spire.Doc组件功能很强大,目 ...

  6. js的日期控件

    jeDate使用的时候,如果不是直接放在html中而是通过Js加载进去的,那么最好来个延迟. http://www.sucaijiayuan.com/Js/DateTime/ http://www.c ...

  7. 初用protobuf-csharp-port

    下面这个用法是参照protobuf-csharp-port的官方wiki,参见: https://code.google.com/p/protobuf-csharp-port/wiki/Getting ...

  8. Php 安装 curl

    一.用好tab键.输入一部分,就按两次tab键,看看到底应该安什么

  9. android 开发之 百度地图的使用

    好久没写博客了,最近遇到个新需求 需要用到百度地图的基础地图,定位,理论上应该还会用到鹰眼的功能吧.具体还很难说.我现在 刚动工,就从头开始记录吧. 首先是先申请一个百度地图api的key 流程官网很 ...

  10. Android AlertDialog

    在Android 4.2 中不推荐使用showDialog弹窗,这里简单总结一下AlertDialog的使用方法,以后复习的时候看着方便,详细使用方法需要的时候再研究. setTitle :为对话框设 ...