https://www.bnuoj.com/v3/problem_show.php?pid=19500 (题目链接)

题意

  给出一个R行C列的正整数矩阵,设前${A_i}$项为其前i行所有元素之和,${B_i}$项为其前i列所有元素之和,已知R,C,A,B,找出一个满足条件的矩阵。其中每个元素都是1~20的正整数。

Solution

  看到这类矩阵形的题目,首先就要考虑构造二分图,左集代表行,右集代表列,其中每一条边代表一个点。

  这样构完图后,我们发现可以使用有上下界的网络流来解决这个问题。添加源点向左集连一条边上界为${A_i}$,下界也为${A_i}$;右集上的每个点向额外添加的汇点连一条上界为${B_i}$,下界为${B_i}$的边;左集右集之间每两个点连一条上界为20,下界1的边。

  码了一半,发现其实并不需要上下界,直接将每个元素-1,下界就成了0,因为行之和与列之和值相等的,所以可行流即为最大流。

细节

  邻接表的下标从1开始。

代码

// bnuoj19500
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define MOD 10000
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1010;
struct edge {int to,next,w;}e[maxn<<1];
int head[maxn],d[maxn],r[maxn],c[maxn],a[maxn][maxn];
int n,m,cnt=1,ans; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
void Init() {
memset(head,0,sizeof(head));
cnt=1;ans=0;
}
bool bfs() {
memset(d,-1,sizeof(d));
queue<int> q;q.push(1);d[1]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[n+m+2]>0;
}
int dfs(int x,int f) {
if (x==n+m+2 || f==0) return f;
int w,used=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;
e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {
while (bfs()) ans+=dfs(1,inf);
}
int main() {
int T;scanf("%d",&T);
for (int Case=1;Case<=T;Case++) {
Init();
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&r[i]);
for (int i=1;i<=m;i++) scanf("%d",&c[i]);
for (int i=n;i;i--) r[i]-=r[i-1];
for (int i=m;i;i--) c[i]-=c[i-1];
for (int i=1;i<=n;i++) link(1,i+1,r[i]-m);
for (int j=1;j<=m;j++) link(j+n+1,n+m+2,c[j]-n);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) link(i+1,j+n+1,19);
Dinic();
printf("Matrix %d\n",Case);
for (int i=1;i<=n;i++)
for (int j=head[i+1];j;j=e[j].next)
if (e[j].to>i) a[i][e[j].to-n-1]=20-e[j].w;
for (int i=1;i<=n;i++) {
for (int j=1;j<=m;j++) printf("%d ",a[i][j]);
puts("");
}
if (Case<T) puts("");
}
return 0;
}

  

【BNUOJ19500】 Matrix Decompressing的更多相关文章

  1. 【UVA11082】Matrix Decompressing(有上下界的网络流)

    题意:给出一个矩阵前i列所有元素的和,和前j行所有元素的和,求这个矩阵解压以后的原型.(答案不唯一) n,m<=20,1<=a[i,j]<=20 思路:这道题把边上的流量作为原先矩阵 ...

  2. 【BZOJ4128】Matrix BSGS+hash

    [BZOJ4128]Matrix Description 给定矩阵A,B和模数p,求最小的x满足 A^x = B (mod p) Input 第一行两个整数n和p,表示矩阵的阶和模数,接下来一个n * ...

  3. 【UVA11019】Matrix Matcher

    Description Given an N × M matrix, your task is to find the number of occurences of an X × Y pattern ...

  4. 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术

    [论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...

  5. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  6. 【uva 11082】Matrix Decompressing(图论--网络流最大流 Dinic+拆点二分图匹配)

    题意:有一个N行M列的正整数矩阵,输入N个前1~N行所有元素之和,以及M个前1~M列所有元素之和.要求找一个满足这些条件,并且矩阵中的元素都是1~20之间的正整数的矩阵.输入保证有解,而且1≤N,M≤ ...

  7. 【数学】Matrix Multiplication

                                 Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total S ...

  8. 【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128 大水题一道 使用大步小步算法,把数字的运算换成矩阵的运算就好了 矩阵求逆?这么基础的线 ...

  9. 题解【POJ2155】Matrix

    Description Given an \(N \times N\) matrix \(A\), whose elements are either \(0\) or \(1\). \(A[i, j ...

随机推荐

  1. 搜索引擎关键词劫持之php篇(源码与分析)

    摘要:其实原理很简单: 搜索引擎关键词劫持的过程实际上就是,修改肉鸡站点(webshell站点)A的首页(希望被搜索引擎收录的页面,一般情况下是首页),使之做出如下判断: if(来访者是蜘蛛){ 输出 ...

  2. [转]IIS添加MIME扩展类型及常用的MIME类型列表

    http://www.cr173.com/html/18997_1.html 经常我在用IIS做为下载服务器的时候有时传上去的文件比如 xxx.iso 文件名名是传上去了,但是用http打开的时候确显 ...

  3. 【转】CSS Sprites教程大全(使用方法、工具介绍)

    什么是CSS Sprite CSS Sprite 又叫CSS精灵,是目前大型网站中经常运用的图片处理方式.它的原理很简单,将网站上零散的小图片(或图标)整合在一张大图上,再用CSS中“backgrou ...

  4. 数据字典生成工具之旅(4):NPOI操作EXECL

    这篇会介绍NPOI读写EXECL,读写EXECL的组件很多,可以使用微软自己的COM组件EXECL.exe读写,不过这种方式限制很大. 1:客户环境必须装Office(虽然现在机子上不装Office的 ...

  5. C/C++实践笔记 003

    数据结构与算法程序=数据结构+算法语言是一种工具语言工具(c,c++)--程序设计方法(面向过程.面向对象)——数据结构(二叉树.队列.栈.红黑树.链表……)——算法(快速排序算法.冒泡排序算法.选择 ...

  6. 求最长回文子串 - leetcode 5. Longest Palindromic Substring

    写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了.... 前后切了一百零几道leetcode的题(sol ...

  7. 由一次程序崩溃引起的对new表达式的再次学习

    1. 起因 某天,一个同事跟我反馈说在windows上调试公司产品的一个交易核心时出现了使用未初始化的指针导致后台服务崩溃的情况.示例代码如下所示: struct sample { ][]; //.. ...

  8. Bootstrap系列 -- 4. 文本内容强调

    一. 文本强调基本样式 .text-muted:提示,使用浅灰色(#999) .text-primary:主要,使用蓝色(#428bca) .text-success:成功,使用浅绿色(#3c763d ...

  9. easyui添加生成tab和子页面jsp

    <!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>& ...

  10. Linux下sysstat工具学习

    Linux下,我们多用ssh链接服务器远程操控.对于系统的监控必不可少,sysstat很不错的监控工具包. sysstat官网:http://sebastien.godard.pagesperso-o ...