s是指所有点的度数;由非负整数组成的非增序列s:d1,d2,d3.....,dn(n>=2,d1>=1)是可图的(即能构成图)当且仅当
s1:d2-1,d3-1,...dn;是可图的;
例如:判断序列s:7,7,4,3,3,3,2,1是否可图。删除序列开头的7,对其后面的7项都减1,得6,3,2,2,1,0;继续删除6,
对其后6项减一,最后一位出现了负数,所以这个序列是不可图的;
例如:判断序列s:5,4,3,3,2,2,2,1,1,1是否可图。删除序列开头的5,对其后面的5项都减1,得3,2,2,1,1,2,1,1,1排序;
继续删除3,对其后3项减一,最后的0,0,0,0;由此判断该序列可图;

例:poj1659

hihoCoder挑战赛11来啦!有Tshirt作为奖品哦~
Language:
Frogs' Neighborhood
Time Limit: 5000MS Memory Limit: 10000K
Total Submissions: 8198 Accepted: 3482 Special Judge
Description

未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1
Sample Output

YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0

NO

YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n;
struct node
{
int id;
int val;
}a[];
bool cmp(node x,node y)
{
return x.val>y.val;
}
int map[][];
int Havel()
{
int i,j;
for(i=;i<n;i++)
{
sort(a+i,a+n,cmp);//每次都要排序
j=a[i].id;//记录头的坐标
int v=a[i].val;
if(v>n-i-)//如果该点的度超过剩下的数 则不存在图
{
return ;
}
for(int k=;k<=v;k++)//开始减度
{
int x=a[k+i].id;
a[k+i].val--;
if(a[k+i].val<)return ;//为负数时2无图
map[j][x]=map[x][j]=;
}
}
return ;
}
int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(map,,sizeof(map));
for(i=;i<n;i++)
{
scanf("%d",&a[i].val);
a[i].id=i;
}
int flag=Havel();
if(!flag)printf("NO\n");
else
{
printf("YES\n");
for(i=;i<n;i++)
{
for(j=;j<n;j++)
{
if(j==)
printf("%d",map[i][j]);
else printf(" %d",map[i][j]);
}
printf("\n");
}
}
if(t)
puts("");//poj为什么没换行报wa,hdu上面还是有PE的
}
}

Havel-Hakimi定理的更多相关文章

  1. POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)

    题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...

  2. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  3. Codeforces 1091E New Year and the Acquaintance Estimation Erdős–Gallai定理

    题目链接:E - New Year and the Acquaintance Estimation 题解参考: Havel–Hakimi algorithm 和 Erdős–Gallai theore ...

  4. POJ1659 Frogs' Neighborhood(Havel定理)

    给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Have ...

  5. Havel定理

    先贴一个百度百科的注释 Havel定理编辑 本词条缺少概述.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 Havel定理 外文名 Canisters theorem 特    ...

  6. LD1-M(简单图的判定+构造,Havel定理)

    题目链接 /* *题目大意: *给出一个图的每个点的度的序列,求能否构成一个简单图,如果能构出简单图,则输出图的邻接矩阵; * *算法思想: *Havel定理的应用; *给定一个非负整数序列{dn}, ...

  7. HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)

    主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiya ...

  8. cdoj913-握手 【Havel定理】

    http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others)     Memory Limit ...

  9. POJ 1659 Frogs' Neighborhood (Havel定理构造图)

    题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...

  10. 【Havel 定理】Degree Sequence of Graph G

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...

随机推荐

  1. 搞netty

    开始搞netty了 查了下资料 在使用NIO 的时候,最好不要配置 SO_LINGER,假设设置了该參数,在 close的时候如缓冲区有数据待写出,会抛出 IOException. // 在netty ...

  2. Maven系列二setting.xml 配置详解

    文件存放位置 全局配置: ${M2_HOME}/conf/settings.xml 用户配置: ${user.home}/.m2/settings.xml note:用户配置优先于全局配置.${use ...

  3. 用ccproxy + stunnel做个加密代理

    https://www.stunnel.org/downloads.html ccproxy + stunnel做个加密http代理和socks5代理 目前国内用户无法访问某些国外网站,如http:/ ...

  4. [No000029]程序员的那些事儿 -- 皆大欢喜的加薪

    我的朋友A君是个典型的.NET开发人员,技术不错,人品也不错,在一家小公司(姑且称为甲公司)做项目开发,是技术骨干. 3个月前,他找到我说想跳槽,让我帮忙介绍工作.我说为什么想跳了? 1. 为什么想离 ...

  5. html5游戏-追踪算法

    追踪算法的原理:目标位置 - 当前位置 / 速度,即: dx = targetX - currentX / speed, dy = targetY - currentY / speed var get ...

  6. gitlab两种连接方式:ssh和http配置介绍

    gitlab环境部署好后,创建project工程,在本地或远程下载gitlab代码,有两种方式:ssh和http (1)ssh方式:这是一种相对安全的方式 这要求将本地的公钥上传到gitlab中,如下 ...

  7. 运维利器-ClusterShell集群管理操作记录

    在运维实战中,如果有若干台数据库服务器,想对这些服务器进行同等动作,比如查看它们当前的即时负载情况,查看它们的主机名,分发文件等等,这个时候该怎么办?一个个登陆服务器去操作,太傻帽了!写个shell去 ...

  8. 全面解读python web 程序的9种部署方式

    转载自鲁塔弗的博客,本文地址http://lutaf.com/141.htm  python有很多web 开发框架,代码写完了,部署上线是个大事,通常来说,web应用一般是三层结构 web serve ...

  9. Centos5.8 安装SVN并配置HTTP访问

    安装 svn sudo yum install subversion 测试 svn --version 安装 httpd 的 svn 模块 sudo yum install mod_dav_svn 前 ...

  10. 方差分析 ANOVA

    来源: http://blog.sciencenet.cn/blog-479412-391481.html 方差分析是为了比较多个总体样本均数是否存在差别.该方法有RA.Fisher首先提出,后来由G ...