BZOJ4517: [Sdoi2016]排列计数
Description
Input
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
1 0
1 1
5 2
100 50
10000 5000
Sample Output
1
20
578028887
60695423
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int maxn=1000010;
const int mod=1000000007;
int xp[maxn],inv[maxn],f[maxn];
int C(int n,int m) {return (ll)xp[n]*inv[m]%mod*inv[n-m]%mod;}
void init(int n) {
xp[0]=inv[0]=inv[1]=1;
rep(i,1,n) xp[i]=(ll)xp[i-1]*i%mod;
rep(i,2,n) inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
rep(i,1,n) inv[i]=(ll)inv[i-1]*inv[i]%mod;
f[2]=f[0]=1;
rep(i,3,n) f[i]=(ll)(f[i-1]+f[i-2])*(i-1)%mod;
}
int A[maxn],B[maxn];
int main() {
int n=read(),m=0;
rep(i,1,n) m=max(m,A[i]=read()),B[i]=read();
init(m);
rep(i,1,n) {
if(B[i]>A[i]) puts("0");
else printf("%d\n",(ll)C(A[i],B[i])*f[A[i]-B[i]]%mod);
}
return 0;
}
BZOJ4517: [Sdoi2016]排列计数的更多相关文章
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- [BZOJ4517][SDOI2016]排列计数(错位排列)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1616 Solved: 985[Submit][Statu ...
- bzoj4517[Sdoi2016]排列计数(组合数,错排)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1792 Solved: 1111[Submit][Stat ...
- [BZOJ4517] [Sdoi2016] 排列计数 (数学)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)
传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...
- BZOJ4517——[Sdoi2016]排列计数
求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数
http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...
- BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
随机推荐
- Jquery 自定义弹窗等待
(function ($) { $.extend({ //弹窗蒙层 ShowLoadDialog : function () { ) { var cusrtxt = $("<div i ...
- 使用getopt函数对windows命令行程序进行参数解析
getopt()是libc的标准函数,很多语言中都能找到它的移植版本. // -b -p "c:\input" -o "e:\test\output" bool ...
- git 常用的简单命令
git add . 会把当前目录中所有有改动的文件(不包括.gitignore中要忽略的文件)都添加到git缓冲区以待提交 git add * 会把当前目录中所有有改动的文件(包括.gitignore ...
- maven 依赖查询
该文章源地址:http://xiejianglei163.blog.163.com/blog/static/1247276201362733217604/ 为方便个人使用,转载于此处. http:// ...
- 团队作业-第一周-NABCD竞争性需求分析
1. Need 需求 随着科技信息的发展,传统的课堂点名亟待步入信息处理的轨道,移动校园课堂点名软件恰好的切入了这个需求点,市场中词类软件也为数不多,因此需求也是比较强烈. 2. Approac ...
- 6-05使用SQL语句删除数据
删除数据语法: DELETE FROM 表名 WHERE 删除条件. TRUNCATE TABLE 表名. --[1]基本删除,省略WHERE条件,将删除表中的所有数据 DELETE FROM ...
- 二、activity与Intent
(一) 多个activity之间的跳转(无值传递) 第一步:创建activity(其实就是jave文件),并进行注册 在AndroidManifest.xml中 <activity androi ...
- Reporting Services 的伸缩性和性能表现规划(转载)
简介 Microsoft? SQL Server? Reporting Services 是一个将集中管理的报告服务器具有的伸缩性和易管理性与基于 Web 和桌面的报告交付手段集于一身的报告平台.Re ...
- 第二十四篇:导出SOUI对象到LUA脚本
LUA是一种体积小,速度快的脚本语言.脚本语言虽然性能上和C++这样的Naitive语言相比差一点,但是开发速度快,可以方便的更新代码等,近年来受到了越来越多开发者的重视. 在SOUI框架中,我把脚本 ...
- 看懂UML类图与时序图
看懂UML类图和时序图 这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图 ...