2797: [Poi2012]Squarks

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 211  Solved: 89
[Submit][Status][Discuss]

Description

设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj。
现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn。

Input

第一行一个正整数n (3<=n<=300)。
第二行n*(n-1)/2个正整数(每个正整数不超过10^8),表示任取两个Xi,Xj(i≠j)算出的n*(n-1)/2个和。

Output

第一行一个正整数k,表示方案数。测试数据保证至少存在一种方案。
下面k行每行给出递增的n个正整数。方案按照{Xi}的最小值从大到小输出。

Sample Input

Sample Input 1
4
3 5 4 7 6 5

Sample Input 2
4
11 17 12 20 21 15

Sample Output

Sample Output 2
2
4 7 8 13
3 8 9 12

Sample Output 1
1
1 2 3 4

HINT

 

Source

[Submit][Status][Discuss]

先把数列排一下序,a1一定是x1+x2,a2一定是x1+x3。如果知道x2+x3的话,就可以求出x1~x3了。

这样的话可以枚举x2+x3,然后求出x1~x3之后删掉这里面的和,最小的一定是x1+x4了,这样又可以求出来x4。

因为n比较小,这样就可以过了。

 #include<set>
#include<cstdio>
#include<algorithm>
#define N 305
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,tot,a[N*N],ans[N][N],x[N];
multiset<int>s;
void solve(int a3)
{
s.clear();
for(int i=;i<=n*(n-)/;i++)
s.insert(a[i]);
if(a[]+a[]+a3&)return;
x[]=a[]+a[]-a3>>;
x[]=a[]-a[]+a3>>;
x[]=-a[]+a[]+a3>>;
if(x[]<||x[]<||x[]<)return;
s.erase(s.find(a[]));
s.erase(s.find(a[]));
s.erase(s.find(a3));
for(int i=;i<=n;i++)
{
x[i]=*s.begin()-x[];
if(x[i]<)return;
for(int j=;j<i;j++)
{
int t=x[j]+x[i];
if(s.find(t)==s.end())return;
s.erase(s.find(t));
}
}
for(int i=;i<=n;i++)
if(x[i]<=x[i-])return;
for(int i=;i<=n;i++)
ans[tot][i]=x[i];
tot++;
}
int main()
{
n=read();
for(int i=;i<=n*(n-)/;i++)a[i]=read();
sort(a+,a+n*(n-)/+);
for(int i=;i<=n;i++)
if(i==||a[i]!=a[i-])
solve(a[i]);
printf("%d\n",tot);
for(int j=;j<tot;j++,puts(""))
for(int i=;i<=n;i++)
printf("%d ",ans[j][i]);
}

(PS:我发现有很多人特别快,不知道是怎么做的。。)

[BZOJ2797][Poi2012]Squarks的更多相关文章

  1. 【BZOJ2797】[Poi2012]Squarks 暴力乱搞

    [BZOJ2797][Poi2012]Squarks Description 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj.现在所有取法共n*(n ...

  2. [POI2012]Squarks

    [POI2012]Squarks 题目大意: 设有\(n\)个互不相同的正整数\(\{X_1,X_2,...,X_n\}\),任取两个\(X_i,X_j(i\ne j)\),能算出\(X_i+X_j\ ...

  3. bzoj 2797 [Poi2012]Squarks 枚举一个,推出所有

    题目大意 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj. 现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn. 输出所有满足条件 ...

  4. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. 2795: [Poi2012]A Horrible Poem

    2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 484  Solved: 235[Subm ...

  7. [BZOJ2803][Poi2012]Prefixuffix

    2803: [Poi2012]Prefixuffix Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 219  Solved: 95[Submit][St ...

  8. [BZOJ2799][Poi2012]Salaries

    2799: [Poi2012]Salaries Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 91  Solved: 54[Submit][Statu ...

  9. POI2012 (持续更新中)

    Distance Well Vouchers Cloakroom A Horrible Poem Rendezvous Fibonacci Representation Squarks Salarie ...

随机推荐

  1. SQL exists( select 1 from

    use UnlockIndustry select * from Info_Coordinate as A join Info_Employee on A.EmployeeId=Info_Employ ...

  2. PHP中array_merge和array相加的区别分析

    今天处理一个这样的问题:如何获取字符键名相同值不同的两个数组值集合,用array_merge和数组相加都不可行,让我认真比较了下PHP中array_merge和array相加的区别 首先来看看键名是s ...

  3. blender源代码编译

    blender源码路径(svn):https://svn.blender.org/svnroot/bf-blender/trunk/blender/ 依赖外部Lib(svn):https://svn. ...

  4. tcflush 功能(转)

    tcflush() 丢弃要写入引用的对象,但是尚未传输的数据,或者收到但是尚未读取的数据,取决于 queue_selector 的值: TCIFLUSH 刷新收到的数据但是不读 TCOFLUSH 刷新 ...

  5. HDU 5869 Different GCD Subarray Query 离线+树状数组

    Different GCD Subarray Query Problem Description   This is a simple problem. The teacher gives Bob a ...

  6. supervisor简介

    一什么是supervisor Superviosr是一个UNIX-like系统上的进程监控工具. Supervisor是一个Python开发的client/server系统,可以管理和监控*nix上面 ...

  7. URL编码表%20Base64编码表%20HTTP消息含义

    URL编码表 backspace 8% A 41% a 61% § %A7 Õ %D5   tab 9% B 42% b 62% « %AB Ö %D6   linefeed %0A C 43% c ...

  8. 在CentOS中快速安装PHP,MySQL,Nginx和phpMyAdmin

    安装环境 yum install -y autoconf automake gcc gcc-c++ git libtool make nasm pkgconfig zlib-devel vim 安装p ...

  9. css3 总结03

    box-flex: 设置或检索弹性盒模型对象的子元素如何分配其剩余空间. <ul id="box"> <li>a</li> <li> ...

  10. .NET开源项目常用记录

    综合类 微软企业库 微软官方出品,是为了协助开发商解决企业级应用开发过程中所面临的一系列共性的问题, 如安全(Security).日志(Logging).数据访问(Data Access).配置管理( ...