4591: [Shoi2015]超能粒子炮·改

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 95  Solved: 33
[Submit][Status][Discuss]

Description

曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加
强大的粒子流的神秘装置。超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升。它有三个参数n,k。它会
向编号为0到k的位置发射威力为C(n,k) mod 2333的粒子流。现在SHTSC给出了他的超能粒子炮·改的参数,让你求
其发射的粒子流的威力之和模2333。

Input

第一行一个整数t。表示数据组数。
之后t行,每行二个整数n,k。含义如题面描述。
k<=n<=10^18,t<=10^5

Output

t行每行一个整数,表示其粒子流的威力之和模2333的值。

Sample Input

1
5 5

Sample Output

32

HINT

Source

By 佚名上传

Solution

Lucas定理算是裸题?

大概就是预处理出组合数和前缀和,然后Lucas搞搞...

Code

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<algorithm>
  5. #include<cmath>
  6. using namespace std;
  7. long long read()
  8. {
  9. long long x=,f=; char ch=getchar();
  10. while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
  11. while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
  12. return x*f;
  13. }
  14. #define mod 2333
  15. #define maxn 2500
  16. int T;long long N,K;
  17. int C[maxn][maxn],Sum[maxn][maxn];
  18. void GetC(int n)
  19. {
  20. C[][]=;
  21. for (int i=; i<=n; i++)
  22. {
  23. C[i][]=;
  24. for (int j=; j<=i; j++)
  25. C[i][j]=(C[i-][j]+C[i-][j-])%mod;
  26. }
  27. for (int i=; i<=n; i++)
  28. {
  29. Sum[i][]=C[i][];
  30. for (int j=; j<=n; j++)
  31. Sum[i][j]=(Sum[i][j-]+C[i][j])%mod;
  32. }
  33. }
  34. int Lucas(long long n,long long m)
  35. {
  36. if (!m) return ;
  37. return C[n%mod][m%mod]*Lucas(n/mod,m/mod)%mod;
  38. }
  39. int Calc(long long n,long long k)
  40. {
  41. if (k<) return ;
  42. return ((Calc(n/mod,k/mod-)*Sum[n%mod][mod-])%mod+(Lucas(n/mod,k/mod)*Sum[n%mod][k%mod])%mod)%mod;
  43. }
  44. int main()
  45. {
  46. T=read();
  47. GetC();
  48. while (T--)
  49. {
  50. N=read(),K=read();
  51. printf("%d\n",Calc(N,K));
  52. }
  53. return ;
  54. }

【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理的更多相关文章

  1. bzoj 4591 超能粒子炮·改 - Lucas

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [BZOJ 4591] 超能粒子炮-改

    Link: 传送门 Solution: 记录一下推$\sum_{i=0}^k C_n^i$的过程: 其实就是将相同的$i/p$合起来算,这样每个里面都是一个可以预处理的子问题 接下来递归下去算即可 T ...

  3. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  4. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  5. BZOJ 4591 【SHOI2015】 超能粒子炮·改

    题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  8. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  9. loj#2038. 「SHOI2015」超能粒子炮・改

    题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<c ...

随机推荐

  1. windows live Writer test

    package com.newegg.shopping.util.listener; import javax.servlet.http.HttpSessionAttributeListener; i ...

  2. ATI显卡添加自定义分辨率

    run regedit, 浏览到这个键目录下 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Video 先导出一个作为备份. 查找 DALNo ...

  3. 快速判断素数 --Rabin-Miller算法

    以前我在判断素数上一直只会 sqrt(n) 复杂度的方法和所谓的试除法(预处理出sqrt(n)以内的素数,再用它们来除). (当然筛选法对于判断一个数是否是素数复杂度太高) 现在我发现其实还有一种方法 ...

  4. 【点滴积累,厚积薄发】windows schedule task中.exe程序的路径问题等问题总结

    1.在发布ReportMgmt的Job时遇到一个路径问题,代码如下: doc.Load(@"Configuration\Business\business.config");   ...

  5. spring:如何用代码动态向容器中添加或移除Bean ?

    先来看一张类图: 有一个业务接口IFoo,提供了二个实现类:FooA及FooB,默认情况下,FooA使用@Component由Spring自动装配,如果出于某种原因,在运行时需要将IFoo的实现,则F ...

  6. C#执行XSL转换

    xsl 可方便的将一种格式的xml,转换成另一种格式的xml,参考下面的代码: using System; using System.IO; using System.Text; using Syst ...

  7. TinyFrame升级之九:实现复杂的查询

    本章我们主要讲解如何实现一个复杂的查询.由于目前TinyFrame框架已经投入到了实际的项目生产中,所以我很乐意将项目中遇到的任何问题做以记录并备忘. 这章中,我们提到的查询界面如下所示: 其中,涉及 ...

  8. Android 的图片异步请求加三级缓存 ACE

    使用xUtils等框架是很方便,但今天要用代码实现bitmapUtils 的功能,很简单, 1 AsyncTask请求一张图片 ####AsyncTask #####AsyncTask是线程池+han ...

  9. HFSS学习

    关于边界条件和端口激励的设置,是HFSS应用和学习的重点和难点:“边界条件决定场”,正确地理解和使用边界条件是正确使用HFSS仿真分析电磁问题的前提:HFSS中定义了多种边界条件,大家在学习过程中必须 ...

  10. EF下泛型分页方法,更新方法

    /// <summary> /// 获取分页的分页集合 /// </summary> /// <typeparam name="S">实体类型& ...