noi 1768 最大子矩阵
题目链接:http://noi.openjudge.cn/ch0206/1768/
可能是数据修改了吧,O(n6)过不了了。
主要是在求一个矩阵的和时,重复计算了很多次。
矩阵首先压缩一下。在输入的时候,就计算好每一列的和于a[i][j]中。
dp:
枚举上界(第一重循环),枚举下界(第二重循环),枚举列数(第三重循环),总的时间复杂度为O(n3);
怎么得到这一列的和呢? 就是利用预处理的 a 数组。temp= a[j][k] - a[i-1][k];
然后这一列上的 dp 方程 f[k] = max(f[k-1]+temp,temp); //选还是不选这一列;
temp2 = max(f[k]) 是这一列的最优值。循环完后,就是 ans = max(temp2) 只一个区间的最优值了。
/*
#include<iostream>
using namespace std; #define INF 0x3f3f3f3f const int Maxn = 110;
int a[Maxn][Maxn]; int main()
{
int n;
cin>>n;
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
cin>>a[i][j]; int ans = -INF;
int sum = 0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
for(int r=i; r<=n; r++)
{
for(int c=j; c<=n; c++)
{
sum = 0;
for(int k=i;k<=r;k++) {
for(int t=j;t<=c;t++) {
sum +=a[k][t];
}
}
if(sum>ans)
ans = sum;
}
}
}
} cout<<ans<<endl; return 0;
}
*/ #include <bits/stdc++.h>
using namespace std; const int INF = 0x3f3f3f3f;
const int Maxn = ;
int a[Maxn][Maxn];
int f[Maxn];
int n; int main()
{
int ans = -INF; scanf("%d",&n);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
scanf("%d",&a[i][j]);
a[i][j] +=a[i-][j];
} for(int i=; i<=n; i++)
{
for(int j=i; j<=n; j++)
{
memset(f,,sizeof(f));
int temp1 = -INF;
for(int k=; k<=n; k++)
{
int temp2 = a[j][k] - a[i-][k];
f[k] = max(f[k-]+temp2,temp2);
temp1 = max(temp1,f[k]);
}
ans = max(ans,temp1);
}
} printf("%d\n",ans); return ;
}
noi 1768 最大子矩阵的更多相关文章
- NOI题库 1768最大子矩阵 题解
NOI题库 1768最大子矩阵 题解 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大 ...
- 1768:最大子矩阵(NOIP2014初赛最后一题)
1768:最大子矩阵 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如 ...
- 崩 oj 1768 最大子矩阵
描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵.比如,如下4 * 4的矩阵0 -2 -7 0 9 2 -6 2 -4 1 - ...
- NOI 动态规划题集
noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...
- NOI题库刷题日志 (贪心篇题解)
这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个平面上,如果有两个点( ...
- #DP# ----- OpenJudge最大子矩阵
OpenJudge 1768:最大子矩阵 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 ...
- openjudge-NOI 2.6基本算法之动态规划 专题题解目录
1.1759 最长上升子序列 2.1768 最大子矩阵 3.1775 采药 4.1808 公共子序列 5.1944 吃糖果 6.1996 登山 7.2000 最长公共子上升序列 8.2718 移动路线 ...
- dp专练
dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...
- NOI-动规题目集锦
162:Post Office 解题思路 #include<bits/stdc++.h> using namespace std; ],f[][],mi[][],i,j; int main ...
随机推荐
- c#语句 for循环嵌套
1.打印三角形. 1) 方法一.for嵌套 方法二.只用一个for 2)倒三角 3)后三角 2.求100以内质数的和. 3.一张纸厚度为0.01米,至少对折多少次才能达到珠峰的高度?(用for死循环) ...
- SpringMVC如何接收application/json内容编码类型的参数?
在上代码之前,有必要先说说@ResquestBody注解的含义: 1.官方解释如下: Annotation indicating a method parameter should be bound ...
- Rearrange a string so that all same characters become d distance away
Given a string and a positive integer d. Some characters may be repeated in the given string. Rearra ...
- LinqToXml
简单的创建一个Xml ///创建一个Xml文档 XElement x = new XElement("qiao");//创建一个根节点 var xx = new XElement( ...
- Node.js 使用 soap 模块请求 WebService 服务接口
项目开发中需要请求webservice服务,前端主要使用node.js 作为运行环境,因此可以使用soap进行请求. 使用SOAP请求webservice服务的流程如下: 1.进入项目目录,安装 so ...
- SQL基础巩固1
直接开门见山------F4 1.查询 对指定的数据表或是视图进行检索查询,找出符合查询条件功能,具体包括以下SQL语法如下所示,其中[]为可选项 Select<列名> From<表 ...
- python 特殊的下划线
Python 用下划线作为变量前缀和后缀指定特殊变量. _xxx 不能用'from module import *'导入 __xxx__ 系统定义名字 __xxx 类中的私有变量名 核 ...
- iOS中文API之NSLayoutconstraint
AutoLayout为开发者提供了一种不同于传统对于UI元素位置指定的布局方法.以前,不论是在IB里拖放,还是在代码中写,每个UIView都会有自己的frame属性,来定义其在当前视图中的位置和尺寸. ...
- 将数据文件从asm移到普通文件系统
数据库可以关闭的场景: 1.关闭并重新mount数据库 $ sqlplus '/as sysdba' SQL> shutdown immediate; SQL> startup mount ...
- java权限修饰符