明明进了中学之后,学到了代数表达式。有一天,他碰到一个很麻烦的选择题。这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的要求是判断选项中哪些代数表达式是和题干中的表达式等价的。这个题目手算很麻烦,因为明明对计算机编程很感兴趣,所以他想是不是可以用计算机来解决这个问题。假设你是明明,能完成这个任务吗?这个选择题中的每个表达式都满足下面的性质:1. 表达式只可能包含一个变量‘a’。2. 表达式中出现的数都是正整数,而且都小于10000。3. 表达式中可以包括四种运算‘+’(加),‘-’(减),‘*’(乘),‘^’(乘幂),以及小括号‘(’,‘)’。小括号的优先级最高,其次是‘^’,然后是‘*’,最后是‘+’和‘-’。‘+’和‘-’的优先级是相同的。相同优先级的运算从左到右进行。(注意:运算符‘+’,‘-’,‘*’,‘^’以及小括号‘(’,‘)’都是英文字符)4.
幂指数只可能是1到10之间的正整数(包括1和10)。5. 表达式内部,头部或者尾部都可能有一些多余的空格。下面是一些合理的表达式的例子:((a^1) ^ 2)^3,a*a+a-a,((a+a)),9999+(a-a)*a,1 + (a -1)^3,1^10^9……对于30%的数据,表达式中只可能出现两种运算符‘+’和‘-’;对于其它的数据,四种运算符‘+’,‘-’,‘*’,‘^’在表达式中都可能出现。对于全部的数据,表达式中都可能出现小括号‘(’和‘)’。分析:


1.不需要考虑括号不匹配问题,输入绝对合法。
2.不需要考虑形如
    (-3+a^7)*2
  这样的情况。

3.另一方面,我认为只有试够11个数才能充分说明正确性:因为

a^10+k9a^9+k8a^8+.......=(a+3)^10+......

这是一个一元十次方程,它需要11个点来确定一条十次曲线。所以要将0-10都代入才能说明问题。

当然,如果这是一条6次曲线,7个点就够,可是谁有想写一个判断次数的函数呢?

4.因为取余运算,导致运算顺序不同,结果就不同。这是一个神坑。所以试的点少一点	,取余数大一点就容易过。



#include<iostream>
using namespace std;
#define big 10007
#define test 8
char ti[51];//题干
int size;//选项个数
int result[test];//准备试的数
bool prior(char a, char b){//运算符a优先级是否大于b
	if (a == '^')return true;
	if (b == '^')return false;
	if (a == '*')return true;
	if (b == '*')return false;
	return true;
}
int power(int a, int b){//乘幂函数要取余
	int i;
	int ans = 1;
	for (i = 0; i < b; i++){
		ans *= a;
		ans %= big;
	}
	return ans;
}
int op(int a, int b, char o){
	switch (o){
	case '^':return power(a, b);
	case '*':a *= b; a %= big; return a;
	case '+':return (a + b) % big;
	case '-':return (a - b) % big;
	}
}
//x表示数字,o表示符号
int calculate(int x[], int xsize, char o[], int osize){
	int i;
	int xstack[51];
	int xtop = 0;
	char ostack[51];
	int otop = 0;
	int xi, oi;
	xi = oi = 0;
	xstack[xtop++] = x[xi++];
	while (xi<xsize&&oi<osize){
		while (otop != 0 && prior(ostack[otop - 1], o[oi])){
			xstack[xtop - 2] = op(xstack[xtop - 2], xstack[xtop - 1], ostack[otop - 1]);
			xtop--;
			otop--;
		}
		ostack[otop++] = o[oi++];
		xstack[xtop++] = x[xi++];
	}
	while (otop >0){
		xstack[xtop - 2] = op(xstack[xtop - 2], xstack[xtop - 1], ostack[otop - 1]);
		xtop--;
		otop--;
	}
	return xstack[0];
}
int go(char ex[], int a){
	int i, j;
	int x[51];
	int xi = 0;
	char o[51];
	int oi = 0;
	i = 0;
	while (ex[i]){
		while (ex[i] == ' ')i++;
		if (ex[i] == 0)break;
		if (ex[i] == '('){
			int left = 1;
			char temp[51];
			j = 0;
			i++;
			while (true){
				temp[j] = ex[i];
				if (temp[j] == '(')left++;
				else if (temp[j] == ')')left--;
				if (left == 0){
					temp[j] = 0;
					x[xi++] = go(temp, a);
					i++;
					break;
				}
				i++; j++;
			}
		}
		else if (ex[i] == 'a'){
			x[xi++] = a;
			i++;
		}
		else{
			int n = 0;
			while (ex[i] >= '0'&&ex[i] <= '9'){
				n *= 10;
				n += ex[i] - '0';
				i++;
			}
			x[xi++] = n;
		}
		while (ex[i] == ' ')i++;
		if (ex[i] == 0)break;
		if (ex[i] == '+' || ex[i] == '-' || ex[i] == '*' || ex[i] == '^'){
			o[oi++] = ex[i];
		}
		i++;
	}
	return calculate(x, xi, o, oi);
}
int main(){
	freopen("in.txt", "r", stdin);
	cin.getline(ti, sizeof(ti));
	cin >> size;
	int i;
	for (i = 0; i < test; i++)
	{
		result[i] = go(ti, i);
	}
	char choose[51];
	cin.getline(choose, 55);
	for (i = 0; i < size; i++){
		cin.getline(choose, 55);
		int j;
		int ans;
		for (j = 0; j < test; j++){
			ans = go(choose, j);
			if (ans != result[j])break;
		}
		if (j == test){
			cout << (char)(i + 'A');
		}
	}
	return 0;
}

vijos-1003等价表达式的更多相关文章

  1. Vijos P1003 等价表达式 随机数+单调栈

    题目链接:https://vijos.org/p/1003 题意: 1. 表达式只可能包含一个变量‘a’. 2. 表达式中出现的数都是正整数,而且都小于10000. 3. 表达式中可以包括四种运算‘+ ...

  2. 数据结构--栈 codevs 1107 等价表达式

    codevs 1107 等价表达式 2005年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Descripti ...

  3. 等价表达式(noip2005)

    3.等价表达式 [问题描述]    兵兵班的同学都喜欢数学这一科目,中秋聚会这天,数学课代表给大家出了个有关代数表达式的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也 ...

  4. 洛谷 P1054 等价表达式 解题报告

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  5. 洛谷P1054 等价表达式

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  6. 等价表达式 2005年NOIP全国联赛提高组(栈模拟)

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  7. 洛谷 P1054 等价表达式

    洛谷 P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式, ...

  8. 表达式求值(noip2015等价表达式)

    题目大意 给一个含字母a的表达式,求n个选项中表达式跟一开始那个等价的有哪些 做法 模拟一个多项式显然难以实现那么我们高兴的找一些素数代入表达式,再随便找一个素数做模表达式求值优先级表 - ( ) + ...

  9. NOIP2005 等价表达式

    题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的要求是判断选项中哪些代数 ...

随机推荐

  1. Android setTag()/getTag()-(转)

    (转自:http://www.cnblogs.com/topcoderliu/archive/2011/06/07/2074419.html) [自己经历:要getTag前提是要有setTag] se ...

  2. django自动化部署脚本

    while read line;do echo'kill '$line; kill $line; done < /tmp/celeryd.pid while read line;do echo' ...

  3. 关于response.getWriter()写回数据的实际发生时间点

    只能说自己平时太粗心了,一些细节问题虽然几次路过,都没有注意过,也没有好好想过. 同事负责的一段微信模块的小逻辑,为了防止微信服务器认为没有接收到请求而重发消息,所以再收到微信服务器发回的消息后,马上 ...

  4. [转]Asp.net MVC使用Filter解除Session, Cookie等依赖

    本文转自:http://www.cnblogs.com/JustRun1983/p/3279139.html 本文,介绍了Filter在MVC请求的生命周期中的作用和角色,以及Filter的一些常用应 ...

  5. Android+Sqlite 实现古诗阅读应用(二)

    传送门:Android+Sqlite 实现古诗阅读应用(一) Hi,又回来了,最近接到很多热情洋溢的小伙伴们的来信,吼开心哈,我会继续努力的=-=! 上回的东西我们做到了有个textview能随机选择 ...

  6. GNU make规则的命令④书写命令

    命令回显 通常, make 在执行命令行之前会把要执行的命令行输出到标准输出设备.我们称之为"回显",就好像我们在 shell 环境下输入命令执行时一样. 如果规则的命令行以字符& ...

  7. SQL存储过程的调用及写法

    调用函数: public class SqlProcess { ; public DataSet ReturnSet = null; public SqlDataAdapter adapter = n ...

  8. java 25 - 4 网络编程之 UDP协议传输的代码优化

    UDP协议的输出端: /* UDP发送数据: A:创建Socket发送端对象 B:创建数据报包(把数据打包) C:调用Socket对象发送数据报包 D:释放资源(底层是IO流) */ public c ...

  9. 虚拟机 centos设置代理上网

    假设我们要设置代理为 IP:PORT 1.网页上网 网页上网设置代理很简单,在firefox浏览器下 Edit-->>Preferences-->>Advanced--> ...

  10. bzoj2438[中山市选2011]杀人游戏

    Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面, 查出谁是杀手. 警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他 认识的人, ...