Description

The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.

Input

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above.

Output

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit.

Sample Input

9

A 2 B 12 I 25

B 3 C 10 H 40 I 8

C 2 D 18 G 55

D 1 E 44

E 2 F 60 G 38

F 0

G 1 H 35

H 1 I 35

3

A 2 B 10 C 40

B 1 C 20

0

Sample Output

216

30

大致题意:在相通n个岛屿的所有桥都坏了,要重修,重修每一个桥所用的时间不同,求重修使每个岛屿都间接或直接与其他岛屿相连时所用的的最短时间(只有修完一个桥后才可修下一个桥)。
简言之就是求最小生成树。
对于数据,数据输入的第一行n代表岛屿的个数,当为0是结束程序,接着n-1行开始时为这岛屿的编号,用大写字母表示,接着是一个整数m,表示与该岛屿连接的字典序大于该岛屿编号的个数,
然后该行输入m对数据,每对数据的第一个字母表示与该岛屿连通的岛屿的编号,第二个数字表示要重修两岛屿之间桥所需要的时间,输出数据见样例及原题。
该题图为稀疏图,用Kruskal算法比较好,经过昨天对于生成树的题目的训练

prim:// 不懂见百度百科

思路:一直找最小的边直到所有的点都被加到最小生成树中

#include<iostream>
using namespace std;
#define mx 1<<29 int map[][];
int r[],v[];
int n,m,p,t; void prim()
{
for(int i=; i<n; i++)
{
r[i]=map[][i];
v[i]=;
}
for(int i=; i<=n; i++)
{
int mi=mx;
for(int j=; j<n; j++)
{
if(!v[j] && r[j]<mi)
mi=r[j],p=j;
}
v[p]=;
for(int j=; j<n; j++)
{
if(!v[j] && map[p][j]<r[j])
r[j]=map[p][j];
}
}
for(int i=; i<n; i++) r[]+=r[i];
cout<<r[]<<endl;
}
int main()
{
while(cin>>n && n)
{
for(int i=; i<n; i++)
for(int j=; j<n; j++)
if(i==j) map[i][j]=;
else map[i][j]=mx;
char a,b;
for(int i=; i<n; i++)
{
cin>>a>>m;
while(m--)
{
cin>>b>>t;
map[a-'A'][b-'A']=map[b-'A'][a-'A']=t;
}
}
prim();
}
return ;
}

Kruskal: 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

代码:

#include<iostream>
#include<algorithm>
using namespace std; struct Edge
{
int b,e,w;
} r[];
int p[];
int n,m,t,q,k,ans; int cmp(Edge x,Edge y)
{
return x.w<y.w;
} int Find(int x)
{
if(x!=p[x]) p[x]=Find(p[x]);
return p[x];
} void Union(int x,int y)
{
x=Find(x);
y=Find(y);
p[y]=x;
} void kruskal()
{
q=;
ans=;
for(int i=; i<k; i++)
{
if(Find(r[i].b) != Find(r[i].e))
{
ans+=r[i].w;
Union(r[i].b,r[i].e);
q++;
}
if(q==n-) break;
}
cout<<ans<<endl;
} int main()
{
while(cin>>n && n)
{
for(int i=; i<n; i++)
p[i]=i;
k=;
char a,b;
for(int i=; i<n; i++)
{
cin>>a>>m;
while(m--)
{
cin>>b>>t;
r[k].b=a-'A';
r[k].e=b-'A';
r[k++].w=t;
}
}
sort(r,r+k,cmp);
kruskal();
}
return ;
}

poj1251 最小生成树的更多相关文章

  1. POJ1251 Jungle Roads【最小生成树】

    题意: 首先给你一个图,需要你求出最小生成树,首先输入n个节点,用大写字母表示各节点,接着说有几个点和它相连,然后给出节点与节点之间的权值.拿第二个样例举例:比如有3个节点,然后接下来有3-1行表示了 ...

  2. POJ1251 Jungle Roads (最小生成树&Kruskal&Prim)题解

    题意: 输入n,然后接下来有n-1行表示边的加边的权值情况.如A 2 B 12 I 25 表示A有两个邻点,B和I,A-B权值是12,A-I权值是25.求连接这棵树的最小权值. 思路: 一开始是在做莫 ...

  3. POJ1251 Jungle Roads 【最小生成树Prim】

    Jungle Roads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19536   Accepted: 8970 Des ...

  4. 最小生成树练习1(克鲁斯卡尔算法Kruskal)

    今天刷一下水题练手入门,明天继续. poj1861 Network(最小生成树)新手入门题. 题意:输出连接方案中最长的单根网线长度(必须使这个值是所有方案中最小的),然后输出方案. 题解:本题没有直 ...

  5. POJ-1251 Jungle Roads---MST裸题(需要编号)

    题目链接: https://vjudge.net/problem/POJ-1251 题目大意: 首先给你一个图,需要你求出最小生成树,输入N个节点,用大写字母表示了节点,然后节点与节点之间有权值. 思 ...

  6. kuangbin最小生成树专题

    网址:https://vjudge.net/contest/66965#overview 第一题: poj1251 裸最小生成树 #include<iostream> #include&l ...

  7. POJ1251(Kruskal水题)

    https://vjudge.net/problem/POJ-1251 The Head Elder of the tropical island of Lagrishan has a problem ...

  8. poj1251 Jungle Roads(Prime || Kruskal)

    题目链接 http://poj.org/problem?id=1251 题意 有n个村庄,村庄之间有道路连接,求一条最短的路径能够连接起所有村庄,输出这条最短路径的长度. 思路 最小生成树问题,使用普 ...

  9. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

随机推荐

  1. Enum:Fliptile(POJ 3279)

    Fliptile 题目大意:农夫想要测牛的智商,于是他把牛带到一个黑白格子的地,专门来踩格子看他们能不能把格子踩称全白 这一题其实就是一个枚举题,只是我们只用枚举第一行就可以了,因为这一题有点像开关一 ...

  2. ghost xp 安装IIS,并配置WCF

    因要一台电脑做WCF服务的测试服务器,但只有一个台式机可能,配置就不用说了,2G内存.之前装的是win7,卡得要死.于是就想把它装回XP系统.但在网上找来找去,都是ghost xp,之前还很怕ghos ...

  3. 【leetcode】Surrounded Regions(middle)☆

    Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...

  4. dropdownlist 动态添加

    this.DropDownList1.Items.Insert(0,new ListItem("",""));                this.Drop ...

  5. IntelliJ IDEA 15.0.4常用快捷键整理

    一.背景 最近刚转了IDEA,感觉真是爽的一逼,太智能了,回不去Eclipse了,还有些淡淡的忧伤呢~在使用中很多的快捷键帮了开发的大忙,让我可以达到事半功倍的效果,下面就罗列出来,与大家共同分享. ...

  6. Tmux的安装、使用与配置

    tmux 安装.使用.配置 因上线需求,故需要使用tumx,方便上线 tmux功能 提供了强大的.易于使用的命令行界面 可横向.纵向分割窗口 窗格可以自由移动和调整大小,或者直接利用四个预设布局之一 ...

  7. 【2016-09-16】UbuntuServer14.04或更高版本安装问题记录

    出于项目需要,我们的Qt程序需要运行在 1. Windows/Linux-X86平台(CPU为常见的桌面级CPU如G3220.I3等): 2. Windows/Linux-X86低功耗平台(CPU为I ...

  8. 【2016-08-21】Linux内核版本编号规则简介

    我们已经了解可以使用下面的几天命令来查看Linux内核版本及Ubuntu发行版本的信息: uname -r uname -a cat /proc/version lsb-release -a 等等 可 ...

  9. MongoDB配置文件YAML-based选项全解

    配置文件部分 MongoDB引入一个YAML-based格式的配置文件.2.4版本以前的仍然兼容. 我的mongodb配置文件: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  10. Android init.rc执行顺序

    转自:http://blog.csdn.net/kickxxx/article/details/7590665 1. 所有的action运行于service之前 2.  下面为各个section的执行 ...