HIT2739 The Chinese Postman Problem(最小费用最大流)
题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程。
经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度。
而这题,果断联想到混合图欧拉回路的做法,用最小费用最大流解决:
- 先只考虑所有边都只走一次,计算出各个点的出度和入度,出度不等于入度的点就需要选择几条边去改变调整它们
- 对于出度多的就和容量网络的汇点连容量出度-入度费用0的边,入度多的源点就向其同样地连边
- 对于原图中的所有边<u,v>由u向v连容量INF费用该边长度的边,一单位流量流过该边就会使原本入度多的u点的出度+1,原本出度多的v点的入度+1
- 然后跑最小费用最大流,如果和源汇相关的边都满流那就有一个解了,而最后的解就是所有边的长度和+最小费用最大流的结果
另外注意判断基图连通。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 111
#define MAXM 8888
struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int vs,vt,NV,NE,head[MAXN];
void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
int d[MAXN],pre[MAXN];
bool vis[MAXN];
bool SPFA(){
for(int i=; i<NV; ++i){
d[i]=INF; vis[i]=;
}
d[vs]=; vis[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int MCMF(int &mxflow){
int res=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
mxflow-=flow;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
res+=cost;
}
return res;
}
int par[MAXN];
int Find(int x){
while(x!=par[x]){
par[x]=par[par[x]];
x=par[x];
}
return x;
}
bool Union(int a,int b){
int pa=Find(a),pb=Find(b);
if(pa==pb) return ;
par[pb]=pa;
return ;
}
int deg[MAXN];
int main(){
int t,n,m,a,b,c;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
vs=n; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
memset(deg,,sizeof(deg));
for(int i=; i<n; ++i) par[i]=i;
int res=,tot=n,mxflow=;
for(int i=; i<m; ++i){
scanf("%d%d%d",&a,&b,&c);
addEdge(a,b,INF,c);
res+=c;
++deg[a]; --deg[b];
if(Union(a,b)) --tot;
}
if(tot!=){
puts("-1");
continue;
}
for(int i=; i<n; ++i){
if(deg[i]<) addEdge(vs,i,-deg[i],);
else addEdge(i,vt,deg[i],),mxflow+=deg[i];
}
res+=MCMF(mxflow);
if(mxflow!=) puts("-1");
else printf("%d\n",res);
}
return ;
}
HIT2739 The Chinese Postman Problem(最小费用最大流)的更多相关文章
- HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...
- HITOJ 2739 The Chinese Postman Problem(欧拉回路+最小费用流)
The Chinese Postman Problem My Tags (Edit) Source : bin3 Time limit : 1 sec Memory limit : 6 ...
- HDU - 6437 Problem L.Videos 2018 Multi-University Training Contest 10 (最小费用最大流)
题意:M个影片,其属性有开始时间S,结束时间T,类型op和权值val.有K个人,每个人可以看若干个时间不相交的影片,其获得的收益是这个影片的权值val,但如果观看的影片相邻为相同的属性,那么收益要减少 ...
- CSU 1506 Problem D: Double Shortest Paths(最小费用最大流)
题意:2个人从1走到n,假设一条路第一次走则是价值di,假设第二次还走这条路则须要价值di+ai,要你输出2个人到达终点的最小价值! 太水了!一条边建2次就OK了.第一次价值为di,第二次为ai+di ...
- POJ 2195:Going Home(最小费用最大流)
http://poj.org/problem?id=2195 题意:有一个地图里面有N个人和N个家,每走一格的花费是1,问让这N个人分别到这N个家的最小花费是多少. 思路:通过这个题目学了最小费用最大 ...
- 【BZOJ】1221: [HNOI2001] 软件开发(最小费用最大流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1221 先吐槽一下,数组依旧开小了RE:在spfa中用了memset和<queue>的版本 ...
- BZOJ 1927 星际竞速(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号 ...
- BZOJ 1061 志愿者招募(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...
- POJ 2195 Going Home(最小费用最大流)
http://poj.org/problem?id=2195 题意 : N*M的点阵中,有N个人,N个房子.让x个人走到这x个房子中,只能上下左右走,每个人每走一步就花1美元,问当所有的人都归位了之 ...
随机推荐
- iOS应用架构谈(一):架构设计的方法论
当我们讨论客户端应用架构的时候,我们在讨论什么? 其实市面上大部分应用不外乎就是颠过来倒过去地做以下这些事情: 简单来说就是调API,展示页面,然后跳转到别的地方再调API,再展示页面. 那这有什么好 ...
- java Http原生 Get 和Post 支持代理认证
import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import ...
- 关于each
1种 通过each遍历li 可以获得所有li的内容 <!-- 1种 --> <ul class="one"> <li>11a</li> ...
- JS判断是否为IE浏览器 包含了IE11
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD ...
- 384. Shuffle an Array
Shuffle a set of numbers without duplicates. Example: // Init an array with set 1, 2, and 3. int[] n ...
- IOS开发中有用的第三方库
#Objective-C中最受瞩目库 [链接](https://github.com/languages/Objective-C/most_watched) * [three20](https:/ ...
- 公众号开发——测试工具【ngrok】
工具下载:ngrok 目录清单: ngrok.exe ngrok.cfg run.bat 点击bat启动. 可修改域名,右键bat文件修改. 成功效果图: 注:80端口被占用了怎么办? —— ...
- 七牛:关于图片 EXIF 信息中旋转参数 Orientation 的理解
EXIF(Exchangeable Image File)是 “可交换图像文件” 的缩写,当中包含了专门为数码相机的照片而定制的元数据,可以记录数码照片的拍摄参数.缩略图及其他属性信息,简单来说,Ex ...
- android:installLocation = "auto" 的用法
在Froyo(android 2.2,API Level:8)中引入了android:installLocation.通过设置该属性可以使得开发者以及用户决定程序的安装位置. android:inst ...
- 4类 JavaScript 内存泄露及如何避免
原文:4 Types of Memory Leaks in JavaScript and How to Get Rid Of Them笔记:涂鸦码龙 译者注:本文并没有逐字逐句的翻译,而是把我认为重要 ...