递归算法(三)——不借助四则运算实现加法
问题
求两个整型变量的和,不能使用四则运算,但可以使用位运算。
思路
以二进制形式,考虑两个整数相加:
a = 01101001b
b = 11100111b
s = ????????
一个常见的结论是:
我们在进行二进制加法的时候(类比十进制加法),若无进位,则直接写上结果;若有进位,则写一个进位标志,作为累计,在高位计算时加入。
也就是说,结果是由截断二进制位和及其进位标志相加而得的。
思考:两个数的和 == 截断二进制位和+进位和,这种转化分解是否可行?
证明:讨论两个1bit相加出现的全部情况,一共有四种。
- 0 + 0 = 0 + 00
- 0 + 1 = 1 + 00
- 1 + 0 = 1 + 00
- 1 + 1 = 0 + 10
等式左边为一位相加,右边为截断结果s和进位c相加,可以看出,等式成立,因此这种转化方式可行。
将等式记为:
a + b = s + c
我们来寻求a、b和s、c的关系。
很容易证明:
- s=a^b,^表示异或,即a、b不同时返回0,相同时返回1。
- c=(a&b)<<1,&表示与,即a、b都为1时返回1,否则返回0;<<表示二进制左移,<<1即乘以2。
这样,转化关系式就得出了:
a + b = a ^ b + (a & b) << 1
但是,在转化关系求出后,还存在一个问题:既然存在转化关系,就有递归调用(迭代),那递归的出口是什么?
如果可以求出递归出口,那么这个方法就完美了。
这相当于问:
a 和 b 有没有终止条件(或者说极限)?
我们假设a和b都是n位二进制数(补码表示,这样a和b的正负性不影响结果),令c=a+b。
初始时,用二进制表示,a = a[n-1] a[n-2] … a[1] a[0],b = b[n-1] b[n-2] … b[1] b[0],c = c[n-1] c[n-2] … c[1] c[0]。
第一次迭代。a=a^b;b=(a&b)<<1。b必为偶数,这样b[0]就是0,又由于a+b=c,故a[0]=c[0]-b[0]=c[0]。
结果为:
a = a[n-1] a[n-2] … a[2] a[1] c[0],
b = b[n-1] b[n-2] … b[2] b[1] 0。
第二次迭代。对于a和b最后一位,运算后结果保持不变,所以问题就归结为a[n-1]~a[1]和b[n-1]~b[1]间的迭代。
结果为:
a = a[n-1] a[n-2] … a[2] c[1] c[0],
b = b[n-1] b[n-2] … b[2] 0 0。
……
第n次迭代。递推可得:
a = c[n-1] c[n-2] … c[1] c[0],
b = 0 0 … 0 0。
所以,a=c,b=0,这就是收敛条件,即递归出口。证毕。
我们还可以得出其他结论:
- 迭代次数的上界是n,超过n,立即收敛。
- 假如b的二进制表示的前缀0有许多,那么收敛速度将大大增加。
- 在迭代过程中,a呈指数增加,b呈指数减少,比率近似于2。
- 假如a和b当中有负数,结果也是正确的,因为位运算是纯二进制运算(补码表示)。
实现
function sum(a,b)
{
return b?sum(a^b,(a&b)<<1):a;
}
递归算法(三)——不借助四则运算实现加法的更多相关文章
- 剑指Offer(书):不用四则运算做加法
题目:写一个函数,求两个整数之和,不得使用四则运算位运算. package com.gjjun.jzoffer; /** * 写一个函数,求两个整数之和,不得使用四则运算 * * @author gj ...
- Opengl_入门学习分享和记录_03_渲染管线(三)借助顶点数组对象VAO提高绑定属性效率
目前我们已经知道了,如果想要顶点着色器解释理解我们的输入数据,就必须要按照以下繁琐的步骤:第一步:将输入的数据复制一份到缓冲区,供OpenGL使用.而这块新出现的区域由VBO管理和表示.(若有多个输入 ...
- 大数四则运算之加法运算--------C语言版(未考虑负数)
/* 声明两个字符数组,用于存储大数,声明两个整数型数组便于计算,将字符数组中的元素转换为对应整数存于整数数组中,将低位放在整数数组低位,便于对齐计算 判断是否有进位,计算结果高位先输出,从数组后往前 ...
- JavaScript中交换两个变量的值得三种做法(代码实现)
javascript在编程时经常会涉及到如何交换两个变量的值,例如常见的冒泡排序,快速排序等:下面我讲根据自己近期所学总结几种常见的交换两个变量值的方法: 方法一:借助第三方变量交换两个变量的值 va ...
- [剑指Offer]65-不用加减乘除做加法
题目 写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. 题解 用位运算模拟加法的三步: 无进位加法:异或运算. 进位:与运算再左移一位. 直到进位为0结束. 代码 pub ...
- Sql三种分页方法
--分页三种方法--第一种 ROW_NUMBER() OVER( ORDER BY OrgID) AS indexs 大于pagesize*pageindex,少于等于pagesize*(pagein ...
- spring学习总结——装配Bean学习三(xml装配bean)
通过XML装配bean Spring现在有了强大的自动化配置和基于Java的配置,XML不应该再是你的第一选择了.不过,鉴于已经存在那么多基于XML的Spring配置,所以理解如何在Spring中使用 ...
- Java实现小学四则运算练习系统(UI)
github项目地址 :https://github.com/feser-xuan/Arithmetic_test3_UI 小伙伴的博客链接:http://www.cnblogs.com/fukang ...
- github下载源码的三种方式
从github上下载源码的三种方式 CreationTime--2018年6月7日15点21分 Author:Marydon 1.情景展示 2.实现方式 方式一:直接点击"Downloa ...
随机推荐
- EF 之 MVC 排序,查询,分页 Sorting, Filtering, and Paging For MVC About EF
最近悟出来一个道理,在这儿分享给大家:学历代表你的过去,能力代表你的现在,学习代表你的将来. 十年河东十年河西,莫欺少年穷 学无止境,精益求精 上篇博客我们学习了EF CodeFirst增删改查 ...
- 51CTO专访淘宝清无:漫谈Nginx服务器与Lua语言
http://os.51cto.com/art/201112/307610.htm 说到Web服务器,也许你第一时间会想到Apache,也许你会想到Nginx.虽然说Apache依然是Web服务器的老 ...
- 安装eclipse与pydev
按照此文档 最简单的eclipse安装方法 sudo apt-get install eclipse 弊端:因为ubuntu默认安装的不是最新版本的eclipse,所以你也不能安装最新的pydev. ...
- .net下的跨域问题
环境: IIS7.0 MVC 4.0 公司官网 asp.net 需要的报名系统,需要有后台管理 由于是配合传统产业,所以MVC系统的数据,是由AIPS系统提供. (制作前是考虑去年用 ...
- navicat----------局域网数据库:如何让navicat链接局域网其他的数据库。
1.方法很简单了,找到被链接的数据库,打开以后有一个自带的mysql数据库,打开以后下面有一个user表,把里面的第一条数据的第一个字段改成% 百分号,然后保存,重启服务器,搞定 2.如果是linux ...
- CsvHelper
写66666行两个数字 用CsvHelper里的ExcelSerializer 400ms SaveAs 200ms 共600ms 直接用StreamWriter 150ms 行数可以超过65536 ...
- FORM 提示保存
修改的FORM在编译到测试环境后打开并没有修改什么数据,却提示是否保存,检查->system.form_satus 为"changed": 个人实际解决情况为:在数据块级的触 ...
- 【Arduino】使用C#实现Arduino与电脑进行串行通讯
在给Arduino编程的时候,因为没有调试工具,经常要通过使用串口通讯的方式调用Serial.print和Serial.println输出Arduino运行过程中的相关信息,然后在电脑上用Arduin ...
- s3c2440 移值u-boot-2016.03 第6篇 支持mtd yaffs 烧写
1, 解决启动时的错误 Warning - bad CRC, using default environment 搜索发现 在 /tools/env/fw_env.c 中 /* 放在NAND FLAS ...
- Linux 中断详解 【转】
转自:http://blog.csdn.net/tiangwan2011/article/details/7891818 原文地址 http://www.yesky.com/20010813/1921 ...