Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

这一题比上一题出现的变化 为 限制不再为两次 而是K次 再一次增加了难度

因为上一题的原因   这里想到了常用的一种算法  动态规划  虽然上一题的动态规划很抽象 但是这里我们具体化一点

首先我们的动态方程怎么设计 根据要求

能不能用一个二维数组profit[t,i]表示  通过T次交易 在第I个商品能获得的最大利润   那么profit[k,n]就是在第N个商品通过K次交易能获得的最大利润

根据推理 得出下列方程

profit[t,i]=max(profit(t,i-1),prices[i]+tmp)

tmp=max(tmp,profit(t-1,i-1)-prices[i])

tmp初始化为第一个商品的价格

这里解释一下 tmp的方程怎么来的 profit(t-1,i-1)-prices[i]表明 在第i-1个商品通过t-1次交易获得利润后 再买入第i个商品 并且跟之前的tmp比较取最大值

profit[t,i]中prices[i]+tmp 表明在之前的tmp基础上 卖出第I个商品获得的利润  和除去第I个商品获得的利润作比较 最大值

同时我们要知道K次是用户自定的 这里有一种特殊情况 我们买东西和卖东西就是两次动作  假设数组有四个数  我们最多进行两次交易 也就是4/2  假设用户给定K大于4/2 就回到了之前我们解决的第二个问题 不限定交易次数 获得最大交易值

这种特殊情况显然不能用动态方程 先除去这种情况 再用动态方程求解

有了思路 开始码代码

public class Solution {
public int maxProfit(int k, int[] prices) {
if(k>prices.length/2)
return inmaxProfit(prices);
int profit[][] =new int[k+1][prices.length];
for(int i=1;i<=k;i++){
int tmp=-prices[0];
for(int j=1;j<prices.length;j++){
profit[i][j]=Math.max(profit[i][j-1],prices[j]+tmp);
tmp=Math.max(tmp,profit[i-1][j-1]-prices[j]);
}
}
return profit[k][prices.length-1];
}
public int inmaxProfit(int[] prices){
int profit=0;
for(int i=0;i<prices.length-1;i++){
int diff=prices[i+1]-prices[i];
if(diff>0){
profit++;
}
}
return profit;
}
}

提交

看看哪里出了问题

给出的K是2  大于三个数的一半  所以进入的是第二个函数

profit++  错了   应该是profit+=diff 修改 提交

public class Solution {
public int maxProfit(int k, int[] prices) {
if(k>prices.length/2)
return inmaxProfit(prices);
int profit[][]=new int[k+1][prices.length];
for(int i=1;i<=k;i++){
int tmp=-prices[0];
for(int j=1;j<prices.length;j++){
profit[i][j]=Math.max(profit[i][j-1],prices[j]+tmp);
tmp=Math.max(tmp,profit[i-1][j-1]-prices[j]);
}
}
return profit[k][prices.length-1];
}
public int inmaxProfit(int[] prices){
int profit=0;
for(int i=0;i<prices.length-1;i++){
int diff=prices[i+1]-prices[i];
if(diff>0){
profit+=diff;
}
}
return profit;
}
}

  

成功

188. Best Time to Buy and Sell Stock IV leetcode解题笔记的更多相关文章

  1. 188. Best Time to Buy and Sell Stock IV——LeetCode

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. 【刷题-LeetCode】188 Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the i-th element is the price of ...

  3. Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. 【LeetCode】188. Best Time to Buy and Sell Stock IV 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  6. 188. Best Time to Buy and Sell Stock IV (Array; DP)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. LeetCode 188. Best Time to Buy and Sell Stock IV (stock problem)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  8. 188. Best Time to Buy and Sell Stock IV

    题目: 链接: 题解: 测试: Reference:

  9. 188 Best Time to Buy and Sell Stock IV 买卖股票的最佳时机 IV

    假设你有一个数组,其中第 i 个元素是第 i 天给定股票的价格.设计一个算法来找到最大的利润.您最多可以完成 k 笔交易.注意:你不可以同时参与多笔交易(你必须在再次购买前出售掉之前的股票). 详见: ...

随机推荐

  1. Python自动化 【第十八篇】:JavaScript 正则表达式及Django初识

    本节内容 JavaScript 正则表达式 Django初识 正则表达式 1.定义正则表达式 /.../  用于定义正则表达式 /.../g 表示全局匹配 /.../i 表示不区分大小写 /.../m ...

  2. public, protected and private inheritance in C++

    Get from Stackoverflow. The details can easily understand from the below example. class A { public: ...

  3. RabbitMQ 入门指南(Java)

    RabbitMQ是一个受欢迎的消息代理,通常用于应用程序之间或者程序的不同组件之间通过消息来进行集成.本文简单介绍了如何使用 RabbitMQ,假定你已经配置好了rabbitmq服务器. Rabbit ...

  4. SQL Server 的数据库简单操作

    --创建数据库--create database 数据库名称[on [primary](name='主数据逻辑文件名',filename='完整的路径.文件名和拓展名'[,size=文件大小][,fi ...

  5. python+selenium简易自动化框架,包含生成测试报告以及发送结果至Email

    Selenium+python环境搭建见虫师的pdf文档,非常详尽 简易框架: 1.文件目录:

  6. windbg命令----!idt

    !idt扩展显示指定的中断分配表(interrupt dispatch table (IDT))中的中断服务例程(interrupt service routine (ISR)) -a 没有指定IDT ...

  7. spring mvc 定时器

    1.下载quartz-all-1.7.3.jar包 a.在Spring配置和Quartz集成内容时,有两点需要注意 b.在<Beans>中不能够设置default-lazy-init=&q ...

  8. linux无线配置

    1. 找 wifi 热点 sudo iwlist scan 2. 生成热点的配置(wpa2加密) sudo wpa_passphrase "wifi热点名称" "wpa密 ...

  9. DataRow[]与DataTable的转换代码【精炼】

    Day_20170106 代码记录 //DataTable查询出DataRow[] DataRow[] drs = AllSysModuleDs.Tables[].Select(string.Form ...

  10. windows 安装mysql 步骤

    Windows 安装mysql 5.7.12教程 1.在官网下载mysql5.7.12.zip并解压 复制默认配置文件my-default.ini,并命名为my.ini 使用记事本打开,修改如下配置 ...