深入理解Java中的锁(三)
ReadWriteLock接口
读写锁维护一对关联锁,一个只用于读操作,一个只用于写操作。读锁可以由多个线程同时持有,又称共享锁。写锁同一时间只能由一个线程持有,又称互斥锁。同一时间,两把锁不能被不同线程持有。读写锁适合读取操作多于写入操作的场景,改进互斥锁的性能,比如集合的并发安全性改造,缓存组件等。
ReentrantReadWriteLock实现原理分析
- ReentrantReadWriteLock需要一个owner用来标记那个写操作的线程获取到了锁,owner只会标记写操作的线程引用,不会标记读操作的线程,一个writeCount用来记录写操作加锁的次数, 一个readCount用来记录读操作加锁的次数,还有一个waiters等待队列用来存放没有抢到锁的线程列表
- 当有写操作线程进来时,会先判断readCount的值,如果readCount为0说明读锁未被占用
- 然后判断writeCount的值,如果writeCount为0,说明写锁未被占用
- 然后通过CAS操作进行抢锁将writeCount值加1,如果抢到锁则将owner设置为当前写操作线程的引用
- 如果writeCount不为0同时owner指向当前写线程的引用,则将writeCount的值加1
- 如果writeCount不为0同时owner指向的不是当前写线程的引用,则将则将线程放入等待队列
- 如果CAS抢锁失败,则将线程放入等待队列
- 如果写操作线程进来时,readCount不为0说明读锁已被占用,则将线程放入等待队列
- 当有读操作线程进来时,会先判断writeCount的值,如果writeCount为0说明写锁未被占用
- 然后通过CAS将readCount的值加1
- 如果读操作线程进来时,writeCount不为0说明写锁被占用
- 如果写锁是被当前线程占用则该线程可以继续获得读锁,即锁降级
- 如果写锁不是被当前线程占用,则将线程放入等待队列
- 当有写线程释放锁时,会将writeCount的值减1,如果writeCount的值为0,则将owner设为null同时唤醒等待队列头部的线程出队列进行抢锁操作
- 如果等待队列的头部线程是读操作,则会进行CAS操作将readCount值加1同时唤醒下一个等待线程
- 如果下一个线程还是读操作,则会进行CAS操作将readCount值加1并且继续唤醒下一个等待线程
- 如果下一个线程是写操作,则不会唤醒需要等到将读锁释放完之后才会唤醒
手动实现ReentrantReadWriteLock示例:
public class MyReadWriteLock {
private AtomicInteger readCount = new AtomicInteger(0);
private AtomicInteger writeCount = new AtomicInteger(0);
// 独占锁 拥有者
private AtomicReference<Thread> owner = new AtomicReference<>();
// 等待队列
private volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<WaitNode>();
class WaitNode {
int type = 0; // 0 为想获取独占锁的线程, 1为想获取共享锁的线程
Thread thread = null;
int arg = 0;
public WaitNode(Thread thread, int type, int arg) {
this.thread = thread;
this.type = type;
this.arg = arg;
}
}
// 获取独占锁
public void lockWrite() {
int arg = 1;
// 尝试获取独占锁,若成功,退出方法, 若失败...
if (!tryLockWrite(arg)) {
// 标记为独占锁
WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg);
waiters.offer(waitNode); // 进入等待队列
// 循环尝试拿锁
for (; ; ) {
// 若队列头部是当前线程
WaitNode head = waiters.peek();
if (head != null && head.thread == Thread.currentThread()) {
if (!tryLockWrite(arg)) { // 再次尝试获取 独占锁
LockSupport.park(); // 若失败,挂起线程
} else { // 若成功获取
waiters.poll(); // 将当前线程从队列头部移除
return; // 并退出方法
}
} else { // 若不是队列头部元素
LockSupport.park(); // 将当前线程挂起
}
}
}
}
// 释放独占锁
public boolean unlockWrite() {
int arg = 1;
// 尝试释放独占锁 若失败返回true,若失败...
if (tryUnlockWrite(arg)) {
WaitNode next = waiters.peek(); // 取出队列头部的元素
if (next != null) {
Thread th = next.thread;
LockSupport.unpark(th); // 唤醒队列头部的线程
}
return true; // 返回true
}
return false;
}
// 尝试获取独占锁
public boolean tryLockWrite(int acquires) {
// 如果read count !=0 返回false
if (readCount.get() != 0) return false;
int wct = writeCount.get(); // 拿到 独占锁 当前状态
if (wct == 0) {
if (writeCount.compareAndSet(wct, wct + acquires)) { // 通过修改state来抢锁
owner.set(Thread.currentThread()); // 抢到锁后,直接修改owner为当前线程
return true;
}
} else if (owner.get() == Thread.currentThread()) {
writeCount.set(wct + acquires); // 修改count值
return true;
}
return false;
}
// 尝试释放独占锁
public boolean tryUnlockWrite(int releases) {
// 若当前线程没有 持有独占锁
if (owner.get() != Thread.currentThread()) {
throw new IllegalMonitorStateException(); // 抛IllegalMonitorStateException
}
int wc = writeCount.get();
int nextc = wc - releases; // 计算 独占锁剩余占用
writeCount.set(nextc); // 不管是否完全释放,都更新count值
if (nextc == 0) { // 是否完全释放
owner.compareAndSet(Thread.currentThread(), null);
return true;
} else {
return false;
}
}
// 获取共享锁
public void lockRead() {
int arg = 1;
if (tryLockRead(arg) < 0) { // 如果tryAcquireShare失败
// 将当前进程放入队列
WaitNode node = new WaitNode(Thread.currentThread(), 1, arg);
waiters.offer(node); // 加入队列
for (; ; ) {
// 若队列头部的元素是当前线程
WaitNode head = waiters.peek();
if (head != null && head.thread == Thread.currentThread()) {
if (tryLockRead(arg) >= 0) { // 尝试获取共享锁, 若成功
waiters.poll(); // 将当前线程从队列中移除
WaitNode next = waiters.peek();
if (next != null && next.type == 1) { // 如果下一个线程也是等待共享锁
LockSupport.unpark(next.thread); // 将其唤醒
}
return; // 退出方法
} else { // 若尝试失败
LockSupport.park(); // 挂起线程
}
} else { // 若不是头部元素
LockSupport.park();
}
}
}
}
// 解锁共享锁
public boolean unLockRead() {
int arg = 1;
if (tryUnLockRead(arg)) { // 当read count变为0,才叫release share成功
WaitNode next = waiters.peek();
if (next != null) {
LockSupport.unpark(next.thread);
}
return true;
}
return false;
}
// 尝试获取共享锁
public int tryLockRead(int acquires) {
for (; ; ) {
if (writeCount.get() != 0 && owner.get() != Thread.currentThread()) return -1;
int rct = readCount.get();
if (readCount.compareAndSet(rct, rct + acquires)) {
return 1;
}
}
}
// 尝试解锁共享锁
public boolean tryUnLockRead(int releases) {
for (; ; ) {
int rc = readCount.get();
int nextc = rc - releases;
if (readCount.compareAndSet(rc, nextc)) {
return nextc == 0;
}
}
}
}
锁降级
锁降级指的是写锁降级为读锁,是指持有写锁的同时,再获取读锁,随后释放写锁的过程。
写锁是线程独占,读锁是线程共享,所以写锁降级为读锁可行,而读锁升级为写锁不可行。
代码示例:
class TeacherInfoCache {
static volatile boolean cacheValid;
static final ReadWriteLock rwl = new ReentrantReadWriteLock();
static Object get(String dataKey) {
Object data = null;
// 读取数据,加读锁
rwl.readLock().lock();
try {
if (cacheValid) {
data = Redis.data.get(dataKey);
} else {
// 通过加锁的方式去访问DB,加写锁
rwl.readLock().unlock();
rwl.writeLock().lock();
try {
if (!cacheValid) {
data = DataBase.queryUserInfo();
Redis.data.put(dataKey, data);
cacheValid = true;
}
} finally {
// 锁降级
rwl.readLock().lock();
rwl.writeLock().unlock();
}
}
return data;
} finally {
rwl.readLock().unlock();
}
}
}
class DataBase {
static String queryUserInfo() {
System.out.println("查询数据库。。。");
return "name:Kody,age:40,gender:true,";
}
}
class Redis {
static Map<String, Object> data = new HashMap<>();
}
深入理解Java中的锁(三)的更多相关文章
- 深入理解Java中的锁
转载:https://www.jianshu.com/p/2eb5ad8da4dc Java中的锁 常见的锁有synchronized.volatile.偏向锁.轻量级锁.重量级锁 1.synchro ...
- 深入理解Java中的锁(一)
Java中锁的概念 自旋锁 : 是指当一个线程在获取锁的时候,如果锁已经被其他线程获取,那么该线程将循环等待,然后不断判断锁是否能够被成功获取,直到获取到锁才会退出循环. 乐观锁 : 假定没有冲突,在 ...
- 深入理解Java中的锁(二)
locks包结构层次 Lock 接口 方法签名 描述 void lock(); 获取锁(不死不休) boolean tryLock(); 获取锁(浅尝辄止) boolean tryLock(long ...
- java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁(转载)
之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...
- java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁
之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...
- Java并发编程:Java中的锁和线程同步机制
锁的基础知识 锁的类型 锁从宏观上分类,只分为两种:悲观锁与乐观锁. 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新 ...
- 深入理解Java中的不可变对象
深入理解Java中的不可变对象 不可变对象想必大部分朋友都不陌生,大家在平时写代码的过程中100%会使用到不可变对象,比如最常见的String对象.包装器对象等,那么到底为何Java语言要这么设计,真 ...
- Java并发指南4:Java中的锁 Lock和synchronized
Java中的锁机制及Lock类 锁的释放-获取建立的happens before 关系 锁是java并发编程中最重要的同步机制.锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消 ...
- 初识指令重排序,Java 中的锁
本文是作者原创,版权归作者所有.若要转载,请注明出处.本文只贴我觉得比较重要的源码 指令重排序 Java语言规范JVM线程内部维持顺序化语义,即只要程序的最终结果与它顺序化情况的结果相等,那么指令的执 ...
随机推荐
- 基于Common.Logging + Log4Net实现的日志管理
前言 Common.Logging 是Commons-Logging(apache最早提供的日志门面接口,提供了简单的日志实现以及日志解耦功能) 项目的.net版本.其目的是为 "所有的.n ...
- 视频直播:Windows中各类画面源的截取和合成方法总结
当今,视频直播技术和实时音视频技术已经是很多行业必备,典型的应用场景有教育直播.远程视频会议.互联网娱乐等.在移动端发起直播,其画面源的种类是十分有限的,无非是取摄像头.截屏等.PC端由于其系统资源充 ...
- 继承Comparable接口来实现排序
1.java代码里进行排序(若sql能排序,就不要用代码排序) 可以继承Comparable接口来实现,若是在类中,可以声明Comparator对象,来进行比较 List<Map> map ...
- vscode左边侧边栏字体的大小
相信很多小伙伴们都会在用vscode的时候,当屏幕大小发生变化的时候,你可能会觉得左边的字体太小了,我也遇到了这样的问题,百度也没有找到解决办法,自己摸索了几天,发现可以通过ctrl+shift+ + ...
- Linux CentOS删除或重命名文件夹和文件的办法
Linux.CentOS操作系统下如何删除和重命名文件夹呢?办法如下: 一.Linux.CentOS下重命名文件和文件夹 mv:move 用移动文件命令就可以了,因为linux系统没有专门的重命名命令 ...
- 用 IQ分布模拟图来测试浏览器的性能
今天天气太凉快,跟这个日历上属于夏天的那一页显得格格不入!就连我我床下那台废弃的ThinkPad,居然也十分透凉气,那外壳连我的体温高都没有,于是,我就开始想一个方法,让我那个废弃的电脑发热,顺便用它 ...
- Java连载5-标识符、关键字和字面值
一.标识符 1.标识符定义:在java源程序中凡是可以自己命名的单词 2.标识符可以标识什么元素? (1)类名(2)方法名(3)变量名(4)接口名(5)常量名 等等 3.标识符的命名要求 (1)一个合 ...
- 探究Hybrid-APP技术原理
探究Hybrid-APP技术原理 author: @TiffanysBear 背景 随着Web技术的发展和移动互联网的发展,Hybrid技术已经成为一种前端开发的主流技术方案.那什么是Hybrid A ...
- Linux 文件系统的基本结构
Linux文件系统为一个倒置的树状结构,所有文件或文件夹均包含在一个根目录/中. Linux系统严格区分大小写所以在Linux中:一个名为“A”的文件夹和一个名为“a”的文件夹是不同的两个文件夹,这点 ...
- 多线程总结-同步之ReentrantLock
目录 1 ReentrantLock与synchronized对比 2.示例用法 2.1 基本用法 2.2 尝试锁 2.3 可打断 2.4 公平锁 1 ReentrantLock与synchroniz ...