2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)

Problem A. Manhattan

solved by RDC 32 min 1Y

题意 给一网格图,找出欧几里得距离为 d 的两点,最大化最短路。

第一回合

三分搜索,第一个点的坐标 \((x,0)(0\leq x<1)\),确定第一个点后,对第二个点的横坐标或者纵坐标进行枚举计算答案。

第二回合

设最优解两点之间,横坐标差绝对值为 \(dx\) 纵坐标差绝对值为 \(dy\),分类讨论。

  • 当 \(dx\) 为整数时,枚举 \(dx\),有 \(dy=\sqrt{d^2-dx^2}\)。
  • 当 \(dy\) 为整数时,枚举 \(dy\)。
  • 否则,猜测答案为 \(\sqrt{2}d\),两点斜率绝对值为 1。(距离为 \(d\) 的两点曼哈顿距离最大值为 \(\sqrt{2}d\))

第三回合

  • 注意到,若 \(min(dx,dy)\geq 1\) 或者 \(dx,dy\) 皆不为整数,两点间最短路即曼哈顿距离。
  • 当两点间最短距离不是曼哈顿距离时,\(0 \leq min(dx,dy)<1\),且 \(dx,dy\) 中存在正整数。

Problem C. Clique Coloring

solved by RDC 112 min 1Y

题意 求极小的 m,使得可以选出大小分别为 \(a_1,a_2,...,a_n\) 的子集,使得两两交大小小于等于 1.

做法

  • 注意到任意两个集合的交,小于等于 1.
  • 元素按,是否归属于 \(1,2,...,n\) 号集合,可以划分成 \(2^n\) 个等价类,编号分别为 \(0\)~\(2^n-1\)
  • DFS 枚举编号 \(bitcount()\) 大于 1 的等价类中是否有元素,剪掉一些 invalid 的枚举(若 \(bitcount(x\&y) \geq 2\),那么第 x 个等价类,第 y 个等价类,不可同时有元素)。
  • 合法的枚举方案很少 \((<1e5)\),对每种方案统计答案即可。

Problem B. Dictionary

upsolved by RDC,sdcgvhgj,F0_0H

题意 给 n 个串,字符集为小写字母,替换 '?',使字典序单增。

做法1 考虑 DP

  • \(f[l][r][p][c]\) 表示考虑第 l 个串到第 r 个串的 p ~ 20 位, 使得它们字典序单增,且 \(s[x] [p]=c(l \leq x \leq r)\) 的方案数。
  • \(g[l][r][p][c]\) 表示考虑第 l 个串到第 r 个串的 p ~ 20 位, 使得它们字典序单增,且 \(s[l] [p]=c\) 的方案数。
  • \(g[21][i][i]['\0']=f[21][i][i]['\0']=1(1\leq i\leq n)\)
  • \(f[l][r][p][c]=\sum_{ch}g[l][r][p+1][c]*[condition]\),其中 \([condition]\) 表示 \(s[x][p](l\leq x\leq r)\) 能否全为字符 \(c\).
  • \(g[l][r][p][c]=\sum_{ch>c}\sum_{mid}f[l][mid][p][c]*((mid+1<=r)?g[mid+1][r][p][ch]:1)\)
  • 对 \(g[l][r][p][]\) 做后缀和,优化。
    code

做法2 对上述状态转移的简化

  • \(f[l][r][p][c]\)表示考虑第 l 个串到第 r 个串的 p ~ 20 位, 使得它们字典序单增,且 \(s[x] [p]\leq c(l \leq x \leq r)\) 的方案数。
  • \(f[l][r][p][c]=\sum_{ch<c}\sum_{mid}f[l][mid][p][ch]*f[mid+1][r][p+1]['z']*[condition]\),其中\([condition]\)表示\(s[x][p](mid+1\leq x\leq r)\)能否全为字符\(c+1\)
    code

Problem D. Dense Amidakuji

upsolved by F0_0H

题意 排骨龙沿着竹竿往下爬,输出会从哪个竹竿落下。

做法

考虑两个如下事实:

  • 对于每条横边,定会被经过两次,一次从左往右,一次从右往左
  • 每删除一条横边,相当于交换该横边左右两次经过的状态

所以只需要考虑每条横边原始被经过的标号,交换一下即可(从上到下考虑)
code


Problem G. Snake

upsolved by sdcgvhgj

题意 给一条折线段\(P_1P_2,.....P_n\),问能否穿过一个洞。

口胡 by rdc

  • 能穿过洞,等价于折线段在任意位置都能被直线划分成两段。
  • 若在位置 \(Q\) 能被划分成两段,那么必存在 \(1\leq i \leq n\),使得 \(QP_i\) 能把折线段划分成两段。
  • 枚举点 \(P_i\),更新点集 \(\{Q|P_iQ 能划分折线段\}\)。
  • 有解,等价于,\(\cup_{i=1}^{n} \{Q|P_iQ 能划分折线段\} = 折线段上点组成点集\)。

Problem J. Hyperrectangle

题意 输入 \(d\) 维长方体,求 \(x_1+x_2+..+x_d\leq s\) 体积。

2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)的更多相关文章

  1. 【取对数】【哈希】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem J. Bobby Tables

    题意:给你一个大整数X的素因子分解形式,每个因子不超过m.问你能否找到两个数n,k,k<=n<=m,使得C(n,k)=X. 不妨取对数,把乘法转换成加法.枚举n,然后去找最大的k(< ...

  2. 【BFS】【最小生成树】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem G. We Need More Managers!

    题意:给你n个点,点带权,任意两点之间的边权是它们的点权的异或值中“1”的个数,问你该图的最小生成树. 看似是个完全图,实际上有很多边是废的.类似……卡诺图的思想?从读入的点出发BFS,每次只到改变它 ...

  3. 【状压dp】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem E. Guessing Game

    题意:给你n个两两不同的零一串,Alice在其中选定一个,Bob去猜,每次询问某一位是0 or 1.问你最坏情况下最少要猜几次. f(22...2)表示当前状态的最小步数,2表示这位没确定,1表示确定 ...

  4. 【推导】【单调性】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem B. Tribute

    题意:有n个数,除了空集外,它们会形成2^n-1个子集,给你这些子集的和的结果,让你还原原来的n个数. 假设原数是3 5 16, 那么它们形成3 5 8 16 19 21 24, 那么第一轮取出开头的 ...

  5. 【线性基】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem A. XOR

    题意:给你一些数,问你是否能够将它们划分成两个集合,使得这两个集合的异或和之差的绝对值最小. 设所有数的异或和为S,集合A的异或和为A. 首先,S的0的位对答案不造成影响. S的最高位1,所对应的A的 ...

  6. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

  7. 【动态规划】【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem B. Dissertation

    题意: 给定S1串,长度100w,S2串,长度1k.问它俩的LCS. f(i,j)表示S2串前i个字符,LCS为j时,最少需要的S1串的前缀长度.转移的时候,枚举下一个字符在S1的位置即可.(可以预处 ...

  8. 【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem A. The Catcher in the Rye

    一个区域,垂直分成三块,每块有一个速度限制,问你从左下角跑到右上角的最短时间. 将区域看作三块折射率不同的介质,可以证明,按照光路跑时间最短. 于是可以二分第一个入射角,此时可以推出射到最右侧边界上的 ...

  9. 2015 UESTC Winter Training #7【2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest】

    2015 UESTC Winter Training #7 2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest 据 ...

随机推荐

  1. 【iOS】PLA 3.3.12

    发件人 Apple Program License Agreement PLA We found that your app uses the Advertising Identifier but d ...

  2. jdk1.8源码解析:HashMap底层数据结构之链表转红黑树的具体时机

    本文从三个部分去探究HashMap的链表转红黑树的具体时机: 一.从HashMap中有关“链表转红黑树”阈值的声明: 二.[重点]解析HashMap.put(K key, V value)的源码: 三 ...

  3. BeanFactory体系结构

    BeanFactory是Spring中非常重要的一个类,搞懂了它,你就知道了bean的初始化和摧毁过程,对于深入理解IOC有很大的帮助. BeanFactory体系结构 首先看一下使用IDEA生成的继 ...

  4. java8中用流收集数据

    用流收集数据 汇总 long howManyDishes = menu.stream().collect(Collectors.counting()); int totalCalories = men ...

  5. 记一次python时间格式转换遇到的坑

    需求:拿到指定格式的时间的前一天的时间,如果今天是月初,年初,自动转换,比如:输入时间是:2019-06-27 23:59:59输出时间是:2019-06-26 23:59:59 之前用datetim ...

  6. 8、大型项目的接口自动化实践记录----DB分别获取预期结果、实际结果

    上一篇实现数据分离升级版--从DB获取数据,以及对应的请求实现,作为一个case,还缺少了预期结果与实际结果的获取及对比.因为前面的文章已经说过接口返回值的获取及对比,所以这篇不说这块了,这篇说一下D ...

  7. kubernetes离线包分析

    k8s离线包解析 产品地址 鸣谢 大家好,首先感谢大家对我们产品的支持,特别是一些老客户的持续支持,让我可以有动力把这个事情持续进行下去. 感谢大家对付费产品的认可,尊重付费 产品介绍 我们专注于k8 ...

  8. luogu1330_封锁阳光大学 图的遍历

    传送门 解释:(转自洛谷题解) 首先,肯定要明确一点,那就是这个图是不一定联通的.于是,我们就可以将整张图切分成许多分开的连同子图来处理.然而最重要的事情是:如何处理一个连通图? 乍看下去,似乎无从下 ...

  9. django drf框架中的user验证以及JWT拓展的介绍

    登录注册是几乎所有网站都需要去做的接口,而说到登录,自然也就涉及到验证以及用户登录状态保存,最近用DRF在做的一个关于网上商城的项目中,引入了一个拓展DRF JWT,专门用于做验证和用户状态保存.这个 ...

  10. python3学习-lxml模块

    在爬虫的学习中,我们爬取网页信息之后就是对信息项匹配,这个时候一般是使用正则.但是在使用中发现正则写的不好的时候不能精确匹配(这其实是自己的问题!)所以就找啊找.想到了可以通过标签来进行精确匹配岂不是 ...