诸侯安置

这道题是一题递推题,一开始自己不知道,用了搜索,只过了三个样例;

两两相同的合并,

成 1,1,3,3,5,5........n*2-1;

然后我们会容易发现一种不同与搜索的动态规划做法.

f[i,j]:=f[i,j]+f[k,j-1]*(Len[i]-(j-1)) [j-1<=k<=i-1]

1.f[i,j]表示前i列放置j个的方案,且第j个放在第i列上,

2.前面f[k,j-1]个都需要累加上来,举一个说明为什么需要累加:对于前4排放置2个的情况(平移后的),2个即可以放在第一列和第三列,也可以放在第一列和第四列,所以需要把这些分布在不同列的情况累加上来。

3.乘(Len[i]-(j-1))是因为前面k列放了j-1个棋子了,然后每行只能放一个棋子,所以第j个棋子在第i列可以放的情况就是Len[i]-(j-1),len[i]是第i列有多少行,程序中是l[i];

下面是ac代码

  1. #include <cstdio>
  2.  
  3. using namespace std;
  4.  
  5. int l[],dp[+][+];
  6. int main(){
  7. int n,k;
  8. scanf("%d%d",&n,&k);
  9. if(k==){printf("1\n");return ;}
  10. if(k>*n-){printf("0\n");return ;}
  11. int t = ;
  12. for(int i=;i<=n;i++)
  13. {
  14. l[*i-]=l[*i]=*i-;
  15. }
  16. dp[][]=;
  17. for(int i=;i<=*n-;i++) //表示当前是第几行
  18. {
  19. for(int j=;j<=i;j++) //可以通过找规律发现,f[i][j]其实是 (f[1~i-1][j]*剩余可放列数) 的总和
  20. {
  21. for(int u=j-;u<i;u++)
  22. dp[i][j]=(dp[i][j]+dp[u][j-]*(l[i]-j+))%;
  23. }
  24. }
  25. int ans = ;
  26. for(int i=k;i<=*n-;i++) //注意ans一定是f[k~2*n-1][k]的总和
  27. {
  28. ans =(ans+dp[i][k])%;
  29. }
  30. printf("%d\n",ans%);
  31. return ;
  32. }

洛谷P1240-诸侯安置+递推非搜索的更多相关文章

  1. 洛谷 P5110 块速递推

    题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...

  2. 洛谷P5110 块速递推 [分块]

    传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...

  3. 洛谷P1120 小木棍 [数据加强版](搜索)

    洛谷P1120 小木棍 [数据加强版] 搜索+剪枝 [剪枝操作]:若某组拼接不成立,且此时 已拼接的长度为0 或 当前已拼接的长度与刚才枚举的长度之和为最终枚举的答案时,则可直接跳出循环.因为此时继续 ...

  4. 洛谷 P1033 自由落体 Label:模拟&&非学习区警告

    题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...

  5. 洛谷 P1378 油滴扩展 Label:搜索

    题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界.必须等一个油滴扩展完毕才能放置下一个油滴. ...

  6. 洛谷P1434滑雪题解及记忆化搜索的基本步骤

    题目 滑雪是一道dp及记忆化搜索的经典题目. 所谓记忆化搜索便是在搜索的过程中边记录边搜索的一个算法. 当下次搜到这里时,便直接使用. 而且记忆化搜索一定要满足无后效性,为什么呢,因为如果不满足无后效 ...

  7. 洛谷P1021邮票面值设计 [noip1999] dp+搜索

    正解:dfs+dp 解题报告: 传送门! 第一眼以为小凯的疑惑 ummm说实话没看标签我还真没想到正解:D 本来以为这么多年前的noip应该不会很难:D 看来还是太菜了鸭QAQ 然后听说题解都可以被6 ...

  8. 洛谷 P1141【BFS】+记忆化搜索+染色

    题目链接:https://www.luogu.org/problemnew/show/P1141 题目描述 有一个仅由数字 0 与 1 组成的n×n 格迷宫.若你位于一格0上,那么你可以移动到相邻 4 ...

  9. 洛谷P1192 台阶问题【记忆化搜索】

    题目:https://www.luogu.org/problemnew/show/P1192 题意: 给定n和k,一个人一次可以迈1~k步,问走n步有多少种方案. 思路: 本来傻乎乎上来就递归,显然会 ...

随机推荐

  1. 一份关于.NET Core云原生采用情况调查

    调查背景 Kubernetes 越来越多地在生产环境中使用,围绕 Kubernetes 的整个生态系统在不断演进,新的工具和解决方案也在持续发布.云原生计算的发展驱动着各个企业转向遵循云原生原则(启动 ...

  2. Calico 网络通信原理揭秘

    Calico 是一个纯三层的数据中心网络方案,而且无缝集成像 OpenStack 这种 Iaas 云架构,能够提供可控的 VM.容器.裸机之间的 IP 通信.为什么说它是纯三层呢?因为所有的数据包都是 ...

  3. STL 大法好

    #include <vector>  1.支持随机访问,但不支持在任意位置O(1)插入:    2.定义:  ```cpp      vector<int> a;  ```  ...

  4. js实现3D切换效果

    今天分享一个3d翻转动画效果,js+css3+h5实现,没有框架. 先看下html部分: <div class="box"> <ul> <li> ...

  5. hdu 6397 Character Encoding (生成函数)

    Problem Description In computer science, a character is a letter, a digit, a punctuation mark or som ...

  6. oracle 正确删除归档日志,并清除 V$ARCHIVED_LOG 数据

    1. 连接 RMAN 管理 rman target / 2. 查看归档日志列表 RMAN> crosscheck archivelog all; 3. 删除所有归档日志 RMAN> DEL ...

  7. 【Java例题】6.2 日期类的使用

    2.日期类的使用.显示今天的年月日.时分秒和毫秒数.显示今天是星期几.是今年内的第几天.显示本月共几天,今年是不是闰年.显示两个日期的差,包括年月日.时分秒和毫秒差值. package chapter ...

  8. 0x03 前缀和与差分

    前缀和 [例题]BZOJ1218 激光炸弹 计算二位前缀和,再利用容斥原理计算出答案即可. #include <iostream> #include <cstdio> #inc ...

  9. 守望先锋app(2)

    上次的功能完成了英雄名字.id.头像的下载并使用RecyclerView展示, 所以接下来就是点击每个英雄的caraview就能打开下一个活动进行英雄的介绍.先打开暴雪的官网查看有那些技能.故事.图片 ...

  10. pycharm的安装配置及思维导图

    1.1 计算机基础知识 主板:人的骨架,用于扩展设备的 cpu:人的大脑,用于计算和逻辑处理的 硬盘:存储数据(永久存储) 电源:人的心脏 内存:存储数据(临时存储) 断电即消失 操作系统 xp wi ...