洛谷P1240-诸侯安置+递推非搜索
这道题是一题递推题,一开始自己不知道,用了搜索,只过了三个样例;
两两相同的合并,
成 1,1,3,3,5,5........n*2-1;
然后我们会容易发现一种不同与搜索的动态规划做法.
f[i,j]:=f[i,j]+f[k,j-1]*(Len[i]-(j-1)) [j-1<=k<=i-1]
1.f[i,j]表示前i列放置j个的方案,且第j个放在第i列上,
2.前面f[k,j-1]个都需要累加上来,举一个说明为什么需要累加:对于前4排放置2个的情况(平移后的),2个即可以放在第一列和第三列,也可以放在第一列和第四列,所以需要把这些分布在不同列的情况累加上来。
3.乘(Len[i]-(j-1))是因为前面k列放了j-1个棋子了,然后每行只能放一个棋子,所以第j个棋子在第i列可以放的情况就是Len[i]-(j-1),len[i]是第i列有多少行,程序中是l[i];
下面是ac代码
#include <cstdio> using namespace std; int l[],dp[+][+];
int main(){
int n,k;
scanf("%d%d",&n,&k);
if(k==){printf("1\n");return ;}
if(k>*n-){printf("0\n");return ;}
int t = ;
for(int i=;i<=n;i++)
{
l[*i-]=l[*i]=*i-;
}
dp[][]=;
for(int i=;i<=*n-;i++) //表示当前是第几行
{
for(int j=;j<=i;j++) //可以通过找规律发现,f[i][j]其实是 (f[1~i-1][j]*剩余可放列数) 的总和
{
for(int u=j-;u<i;u++)
dp[i][j]=(dp[i][j]+dp[u][j-]*(l[i]-j+))%;
}
}
int ans = ;
for(int i=k;i<=*n-;i++) //注意ans一定是f[k~2*n-1][k]的总和
{
ans =(ans+dp[i][k])%;
}
printf("%d\n",ans%);
return ;
}
洛谷P1240-诸侯安置+递推非搜索的更多相关文章
- 洛谷 P5110 块速递推
题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...
- 洛谷P5110 块速递推 [分块]
传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...
- 洛谷P1120 小木棍 [数据加强版](搜索)
洛谷P1120 小木棍 [数据加强版] 搜索+剪枝 [剪枝操作]:若某组拼接不成立,且此时 已拼接的长度为0 或 当前已拼接的长度与刚才枚举的长度之和为最终枚举的答案时,则可直接跳出循环.因为此时继续 ...
- 洛谷 P1033 自由落体 Label:模拟&&非学习区警告
题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...
- 洛谷 P1378 油滴扩展 Label:搜索
题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界.必须等一个油滴扩展完毕才能放置下一个油滴. ...
- 洛谷P1434滑雪题解及记忆化搜索的基本步骤
题目 滑雪是一道dp及记忆化搜索的经典题目. 所谓记忆化搜索便是在搜索的过程中边记录边搜索的一个算法. 当下次搜到这里时,便直接使用. 而且记忆化搜索一定要满足无后效性,为什么呢,因为如果不满足无后效 ...
- 洛谷P1021邮票面值设计 [noip1999] dp+搜索
正解:dfs+dp 解题报告: 传送门! 第一眼以为小凯的疑惑 ummm说实话没看标签我还真没想到正解:D 本来以为这么多年前的noip应该不会很难:D 看来还是太菜了鸭QAQ 然后听说题解都可以被6 ...
- 洛谷 P1141【BFS】+记忆化搜索+染色
题目链接:https://www.luogu.org/problemnew/show/P1141 题目描述 有一个仅由数字 0 与 1 组成的n×n 格迷宫.若你位于一格0上,那么你可以移动到相邻 4 ...
- 洛谷P1192 台阶问题【记忆化搜索】
题目:https://www.luogu.org/problemnew/show/P1192 题意: 给定n和k,一个人一次可以迈1~k步,问走n步有多少种方案. 思路: 本来傻乎乎上来就递归,显然会 ...
随机推荐
- Linux平台 Oracle 19c RAC安装Part1:准备工作
一.实施前期准备工作 1.1 服务器安装操作系统 1.2 Oracle安装介质 1.3 共享存储规划 1.4 网络规范分配 二.安装前期准备工作 2.1 各节点系统时间校对 2.2 各节点关闭防火墙和 ...
- 并发栅栏CyclicBarrier---简单问2
并发栅栏CyclicBarrier---简单问 背景:前几天在网上看到关于Java并发包java.concurrent中一个连环炮的面试题,整理下以备不时之需. CyclicBarrier简介: 栅栏 ...
- 隐马尔科夫模型HMM介绍
马尔科夫链是描述状态转换的随机过程,该过程具备“无记忆”的性质:即当前时刻$t$的状态$s_t$的概率分布只由前一时刻$t-1$的状态$s_{t-1}$决定,与时间序列中$t-1$时刻之前的状态无关. ...
- 【Python-Django定义用户模型类】Python-Django定义用户模型类详解!!!
定义用户模型类 1. Django默认用户认证系统 Django自带用户认证系统 它处理用户账号.组.权限以及基于cookie的用户会话. Django认证系统位置 django.contrib.au ...
- Vue小事例
login <!DOCTYPE html><html lang="ZH-cn"> <head> <meta charset="U ...
- Ubuntu : apt-get 命令
apt-get 命令是 Ubuntu 系统中的包管理工具,可以用来安装.卸载包,也可以用来升级包,还可以用来把系统升级到新的版本.本文介绍 apt-get 命令的基本用法,演示环境为 Ubuntu 1 ...
- java web 加载Spring --web.xml 篇
spring是目前最流行的框架.今天谈谈对spring的认识 起步 javaweb中我们首先会遇到的配置文件就是web.xml,这是javaweb为我们封装的逻辑,不在今天的研究中.略过,下面是一个标 ...
- python第三课--函数
函数的作用 编程大师Martin Fowler先生曾经说过:“代码有很多种坏味道,重复是最坏的一种!”,要写出高质量的代码首先要解决的就是重复代码的问题.例如3次求阶乘: m = int(input( ...
- python调用支付宝支付接口
python调用支付宝支付接口详细示例—附带Django demo代码 项目演示: 一.输入金额 二.跳转到支付宝付款 三.支付成功 四.跳转回自己网站 在使用支付宝接口的前期准备: 1.支付宝公 ...
- 记一次 Windows MySQL 恢复
0x00 事件 因为本地的服务器硬件出现故障,导致一台 Windows 系统的开发环境挂了,且无法短时间内恢复状态. 应急方案是使用了云上的系统重建了开发环境. 开发人员说需要挂了的那台 Window ...