思路:

这个

a[1]=a[2]=a[3]=1

a[x]=a[x-3]+a[x-1] (x>3)

可以想成:

a(n)  】  【1 0 1】 【a(n-1)   】

a(n-1) 】 =   【1 0 0】 * 【a(n-2)  】

a(n-2) 】   【0 1 0】 【a(n-3)   】

然后就是利用矩阵快速幂去算中间那个矩阵的n次结果

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
typedef long long ll;
const int lg= 1e9+;
const int maxn = ;
struct node {
ll m[maxn][maxn];
}ans,res; node Mul(node a,node b,ll n)
{
node tmp;
memset(tmp.m,,sizeof(tmp));
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
for(int k=; k<=n; k++)
tmp.m[i][j] = (tmp.m[i][j]+a.m[i][k]*b.m[k][j]%lg)%lg;
}
}
return tmp;
}
void jzksm(ll n,ll k)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
if(i==j)ans.m[i][j] = ;
else ans.m[i][j] = ;
}
}
while(k)
{
if(k&)ans = Mul(ans,res,n);
res = Mul(res,res,n);
k>>=;
}
}
int main(){
int t,n;
scanf("%d", &t);
while(t--)
{ scanf("%d", &n);
memset(res.m,,sizeof(res.m));
res.m[][] = res.m[][] = res.m[][] = res.m[][] = ;
jzksm(,n);
printf("%lld\n",ans.m[][]%lg); }
return ;
}

洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂的更多相关文章

  1. 洛谷 P1045 【麦森数】快速幂

    不用快速幂,压位出奇迹! 本人是个蒟蒻,不太熟悉快速幂,这里给大家介绍一种压位大法. 让我们来分析一下题目,第一位是送分的,有一个专门求位数的函数:n*log10(2)+1. 然后题目中p<=3 ...

  2. 洛谷P5151 HKE与他的小朋友 快速幂/图论+倍增

    正解:矩阵快速幂/tarjan+倍增 解题报告: 传送门! 跟着神仙做神仙题系列III 这题首先一看到就会想到快速幂趴?就会jio得,哦也不是很难哦 然而,看下数据范围,,,1×105,,,显然开不下 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

  5. 洛谷 P1939 【模板】矩阵加速(数列) 解题报告

    P1939 [模板]矩阵加速(数列) 题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值 ...

  6. [洛谷P1939]【模板】矩阵加速(数列)

    题目大意:给你一个数列a,规定$a[1]=a[2]=a[3]=1$,$a[i]=a[i-1]+a[i-3](i>3)$求$a[n]\ mod\ 10^9+7$的值. 解题思路:这题看似是很简单的 ...

  7. 【洛谷P1939】 矩阵加速模板

    https://www.luogu.org/problemnew/show/P1939 矩阵快速幂 斐波那契数列 首先看一下斐波那契数列的矩阵快速幂求法: 有一个矩阵1*2的矩阵|f[n-2],f[n ...

  8. 洛谷 P1939 矩阵加速(数列)

    题意简述 \(a[1]=a[2]=a[3]=1\) \(a[x]=a[x−3]+a[x−1](x>3)\) 求a数列的第n项对1000000007取余的值. 题解思路 矩阵加速 设\[ F=\b ...

  9. 洛谷 [P1939] 矩阵加速数列

    矩阵快速幂模版 #include <iostream> #include <cstring> #include <cstdlib> #include <alg ...

随机推荐

  1. .net持续集成sonarqube篇之 sonarqube与jenkins集成(插件模式)

    系列目录 Jenkins通过插件集成Sonarqube 通过上一节我们了解了如何配置以使jenkins ci环境中可以执行sonarqube构建,其实Sonarqube官方也提供了jenkins插件以 ...

  2. Python3的日志添加功能

    python日志添加功能,主要记录程序运行中的日志,统一收集并分析 一.日志的级别 debug(调试信息) info() warning(警告信息)error(错误信息) critical(致命信息) ...

  3. C# 二维码的生成

    nuget 搜索qrcodenet,然后选择下载gma.qrcodenet public partial class Form1 : Form { public Form1() { Initializ ...

  4. 提交bug的标准及书写规范

    Bug有效性 1.交付过程中测试者需按照专家设定好的模块,对Bug进行归类提交: 2.Bug的类型默认为UI问题.功能问题.崩溃问题,提交Bug时不能弄错: 3.需求是否明确.前提条件是否满足.输入数 ...

  5. bit、byte、kb、mb、g的区别

    1Byte=8bit1KB=1024Byte(字节)=8*1024bit1MB=1024KB1GB=1024MB1TB=1024GB bit是计算机数据的最小单元.要么是0,要么是1. byte 关键 ...

  6. 【Python】Django【邮箱验证】 后端验证如何生成 token加密验证码 与如何解码!!!!

    1.生成token验证码方案   ,使用itsdangerous    大宝剑, 可以序列化出验证码,并能设置过期时间 安装 itsdangerous pip install itsdangerous ...

  7. adb 下载安装

    1.官网下载:选择自己电脑对应的版本 https://www.androiddevtools.cn/#   SDK Tools, SDK platfrom  Tools(解压在sdk 的根目录下) 2 ...

  8. UR机器人通信--上位机通信(python)

    一.通信socket socket()函数 Python 中,我们用 socket()函数来创建套接字,语法格式如下: socket.socket([family[, type[, proto]]]) ...

  9. MyISAM和InnoDB在索引上的差别及其它区别

    首先我们知道MyISM和InnoDB索引都是由B+树实现的,但在索引管理数据方式上却有所不同. InnoDB是聚集索引,数据文件是和(主键)索引绑在一起的,即索引 + 数据 = 整个表数据文件,通过主 ...

  10. 关于JSP页面的静态包含和动态包含

    JSP中有两种包含:静态包含:<%@include file="被包含页面"%> 和 动态包含:<jsp:include page="被包含页面&quo ...