Halloween treats

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1097    Accepted Submission(s): 435
Special Judge

Problem Description
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

 
Input
The input contains several test cases. 
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

 
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet, print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
 
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
 
Sample Output
3 5
2 3 4
 
Source
 
Recommend
linle   |   We have carefully selected several similar problems for you:  1802 1807 1806 1804 1801 
 
鸽巢原理的意思是一定存在一个连续的区间,满足题目要求(是n的倍数)
所以我们只需要求一段连续区间的和是否是n的倍数
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 1e5 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
ll vis[maxn], a[maxn];
int main() {
std::ios::sync_with_stdio(false);
ll n, m;
while( cin >> n >> m ) {
if( !n && !m ) {
break;
}
ll sum = 0, t;
memset( vis, 0, sizeof(vis) );
for( ll i = 1; i <= m; i ++ ) {
cin >> a[i];
}
for( ll i = 1; i <= m; i ++ ) {
sum += a[i];
t = sum%n;
if( t == 0 ) {
for( ll j = 1; j < i; j ++ ) {
cout << j << " ";
}
cout << i << endl;
break;
} else if( vis[t] ) { //如果余数在前面出现过,现在又出现了,则中间一定加了n的倍数
for( ll j = vis[t]+1; j < i; j ++ ) {
cout << j << " ";
}
cout << i << endl;
break;
}
vis[t] = i;
}
}
return 0;
}

  

Halloween treats HDU 1808 鸽巢(抽屉)原理的更多相关文章

  1. [POJ3370]&[HDU1808]Halloween treats 题解(鸽巢原理)

    [POJ3370]&[HDU1808]Halloween treats Description -Every year there is the same problem at Hallowe ...

  2. HDU 1205 鸽巢原理

    #include <bits/stdc++.h> using namespace std; long long abs_(long long a,long long b) { if(a&g ...

  3. HDU 5776 sum(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=5776 Problem Description Given a sequence, you're ask ...

  4. hdu 1205 吃糖果 (抽屉原理<鸽笼原理>)

    吃糖果Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submissi ...

  5. HDU 1808 Halloween treats(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=1808 Problem Description Every year there is the same ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ3370&amp;HDU1808 Halloween treats【鸽巢原理】

    题目链接: id=3370">http://poj.org/problem?id=3370 http://acm.hdu.edu.cn/showproblem.php?pid=1808 ...

  8. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  9. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

随机推荐

  1. UE4 游戏模块初始化顺序

    最近看教学,有个讲解UE4初始化顺序的,记录一下. 首先创建一个Actor,Character,GameInstance,GameMode,LevelScriptActor(关卡),PlayerCon ...

  2. spark shuffle写操作三部曲之UnsafeShuffleWriter

    前言 在前两篇文章 spark shuffle的写操作之准备工作 中引出了spark shuffle的三种实现,spark shuffle写操作三部曲之BypassMergeSortShuffleWr ...

  3. .net开源生态,WTM与NCC

    天下大势,分久必合,合久必分.改朝换代都如花开花谢,过眼云烟,更别提开发语言的更迭了. 我们所坚持的,只是那最初的感动,那“只是在人群中多看了你一眼”的惊艳.三十年河东,三十年河西,不忘初心,方得始终 ...

  4. SpringBoot:如何优雅地处理全局异常?

    之前用springboot的时候,只知道捕获异常使用try{}catch,一个接口一个try{}catch,这也是大多数开发人员异常处理的常用方式,虽然屡试不爽,但会造成一个问题,就是一个Contro ...

  5. win10 我的电脑下面的六个文件夹的隐藏

      第一步   第二步     第三步 修改注册表,要隐藏那个文件夹,ThisPCPolicy 改为 "Hide" 修改我的文档的注册表值,使我的文档文件夹隐藏     <w ...

  6. JS DOM(文档对象模型)与BOM(浏览器对象模型)

    在JS中,对DOM(Document Object Model)对象和BOM(Browser Object Model )对象的操作是非常重要的内容.DOM主要包括HTML文档的属性和方法,像对HTM ...

  7. 消息中间件——RabbitMQ(三)理解RabbitMQ核心概念和AMQP协议!

    前言 本章学习,我们可以了解到以下知识点: 互联网大厂为什么选择RabbitMQ? RabbiMQ的高性能之道是如何做到的? 什么是AMQP高级协议? AMQP核心概念是什么? RabbitMQ整体架 ...

  8. 实现API管理系统的几个重要关键词

    管理API的需求源自于Web API开展业务.从2006年开始,然后逐渐成熟,并在2016年之前进入市场.无论是通过代理现有API的管理网关.本身作为用于部署API本身的网关的一部分,还是作为连接层在 ...

  9. Linux安装配置Samba共享文件系统

    Samba共享文件系统搭建与配置: 1.Samba服务端:yum install samba samba-client cifs-utilscd /etc/samba/cp smb.conf smb. ...

  10. c语言的图形库

    图形库链接http://www.easyx.cn/ 使用图形库头文件easyx.h或graphics.h 同样在里面下载图形库帮助文档进行查询 vs vc都可使用图形库 图形库窗口: initgrap ...