import time
import os
import math
import sys
import os,os.path,shutil
import numpy as np
import cv2 img_in_path = 'F:/project/Breast/InBreast/INBreast/removeother/'
# img_in_path = 'F:/project/Breast/InBreast/INBreast/imgtest/'
outpathimgyes = 'F:/project/Breast/InBreast/INBreast/outimgpatch/calcification/'
outpathimgno = 'F:/project/Breast/InBreast/INBreast/outimgpatch/no/'
txtPath = 'F:/project/Breast/InBreast/INBreast/AllTXTall/'
# txtPath = 'F:/project/Breast/InBreast/INBreast/ALLtest/'
outpathtxt = 'F:/project/Breast/InBreast/INBreast/outtxtpatch/'
txtType = 'txt'
txtLists = os.listdir(txtPath) #列出文件夹下所有的目录与文件 # Read all points into a list(before 21:30,715) for filename in txtLists:
pp = 0
ppp = 0
with open(txtPath + filename, 'r') as file:
print(filename)
lines = file.readlines()
dataset = [[] for i in range(len(lines))]
for i in range(len(dataset)):
dataset[i][:] = (item for item in lines[i].strip().split(',')) # 逐行读取数据
#print("dateset:", dataset)
# print(type(dataset[0][0]))
# print(dataset.__sizeof__())
u = np.array(dataset)
list = np.zeros((u.shape[0], 2))
for i in range(u.shape[0]):
# print(u[i,0][0])
findNumber = u[i,0].find(" ")
# print(findNumber)
list[i,0] = round(float(u[i, 0][0:findNumber]))
list[i,1] = round(float(u[i, 0][findNumber+1:])) # Read the same name image(before 21:30,715)
img = img_in_path + filename[:-4] + '.png' # out_path
img = cv2.imread(img)
black = np.zeros((img.shape[0], img.shape[1]))
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if img[i,j][0] == 0 and img[i,j][1] == 0 and img[i,j][2] == 0:
black[i][j] = 1
print(img.shape[0],img.shape[1])
# Cutting distance has been determined, Handling cutting details(before 22.30, 715)
row = img.shape[0]/56;
col = img.shape[1]/56;
print(row,col) # 待考虑问题:黑色像素
for i in range(int(row-1)):
# print(i)
for j in range(int(col-1)):
tt = 0
pb = np.sum(black[i * 56:i * 56 + 112,j * 56:j * 56 + 112]) / 12544
# print("top_left:", i*56, j*56)
# print("bottom_right:",i*56+112,j*56+112)
for k in range(u.shape[0]):
if j*56<list[k,0]<j*56+112 and i*56<list[k,1]<i*56+112:
tt = tt + 1
patch_label = np.zeros((tt, 4))
tt1 = 0
for k in range(u.shape[0]):
if j*56<list[k,0]<j*56+112 and i*56<list[k,1]<i*56+112:
patch_label[tt1,0] = list[k,0] - j*56
patch_label[tt1,1] = list[k,1] - i*56
patch_label[tt1,2] = list[k,0]
patch_label[tt1,3] = list[k,1]
tt1 = tt1 + 1
if tt>0 and pb == 0:
patch = img[i * 56:i * 56 + 112,j * 56:j * 56 + 112]
pp = pp + 1
# print(patch.shape)
outputimg = outpathimgyes + '/' + filename[:-4] + '/' + filename[:-4] + '_'+ str(pp) + '.png'
cv2.imwrite(outputimg, patch)
outputtxt1 = outpathtxt + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(pp) + '.txt'
np.savetxt(outputtxt1, patch_label, fmt='%f')
if tt==0 and pb == 0:
patch = img[i * 56:i * 56 + 112,j * 56:j * 56 + 112]
ppp = ppp + 1
# print(patch.shape)
outputimg1 = outpathimgno + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(ppp) + '.png'
cv2.imwrite(outputimg1, patch) print(img.shape[0], img.shape[1])
print(pp,ppp) for i in range(int(row-1)):
tt = 0
pb = np.sum(black[i * 56:i * 56 + 112, img.shape[1] - 113:img.shape[1]-1]) / 12544
# print("top_right:",i*56,img.shape[1]-1)
# print("bottom_left:", i * 56+112, img.shape[1] - 113)
for k in range(u.shape[0]):
if img.shape[1] - 113 < list[k, 0] < img.shape[1]-1 and i * 56 < list[k, 1] < i * 56 + 112:
tt = tt + 1
patch_label = np.zeros((tt, 4))
tt1 = 0
# print(tt)
for k in range(u.shape[0]):
if img.shape[1] - 113 < list[k, 0] < img.shape[1]-1 and i * 56 < list[k, 1] < i * 56 + 112:
patch_label[tt1, 0] = list[k, 0] - j * 56
patch_label[tt1, 1] = list[k, 1] - i * 56
patch_label[tt1, 2] = list[k, 0]
patch_label[tt1, 3] = list[k, 1]
tt1 = tt1 + 1
if tt > 0 and pb == 0.1:
patch = img[i * 56:i * 56 + 112, img.shape[1] - 113:img.shape[1]-1]
pp = pp + 1
# print(patch.shape)
outputimg = outpathimgyes + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(pp) + '.png'
cv2.imwrite(outputimg, patch)
outputtxt1 = outpathtxt + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(pp) + '.txt'
np.savetxt(outputtxt1, patch_label, fmt='%f')
if tt == 0 and pb == 0:
patch = img[i * 56:i * 56 + 112, img.shape[1] - 113:img.shape[1]-1]
ppp = ppp + 1
# print(patch.shape)
outputimg1 = outpathimgno + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(ppp) + '.png'
cv2.imwrite(outputimg1, patch)
print(img.shape[0], img.shape[1])
#
#
#
for j in range(int(col-1)):
# print("bottom_left:", img.shape[0]-1, j*56)
# print("top_right:", img.shape[0] - 113, j * 56+112, )
tt = 0
pb = np.sum(black[img.shape[0]-113:img.shape[0] - 1, j * 56:j * 56+112]) / 12544
# print("top_right:",i*56,img.shape[1]-1)
# print("bottom_left:", i * 56+112, img.shape[1] - 113)
for k in range(u.shape[0]):
if j * 56 < list[k, 0] < j * 56+112 and img.shape[0]-113 < list[k, 1] < img.shape[0]-1:
tt = tt + 1
patch_label = np.zeros((tt, 4))
tt1 = 0
# print(tt)
for k in range(u.shape[0]):
if j * 56 < list[k, 0] < j * 56+112 and img.shape[0]-113 < list[k, 1] < img.shape[0]-1:
patch_label[tt1, 0] = list[k, 0] - j * 56
patch_label[tt1, 1] = list[k, 1] - i * 56
patch_label[tt1, 2] = list[k, 0]
patch_label[tt1, 3] = list[k, 1]
tt1 = tt1 + 1
if tt > 0 and pb == 0:
patch = img[img.shape[0]-113:img.shape[0] - 1, j * 56:j * 56+112]
pp = pp + 1
# print(patch.shape)
outputimg = outpathimgyes + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(pp) + '.png'
cv2.imwrite(outputimg, patch)
outputtxt1 = outpathtxt + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(pp) + '.txt'
np.savetxt(outputtxt1, patch_label, fmt='%f')
if tt == 0 and pb == 0:
patch = img[img.shape[0]-113:img.shape[0] - 1, j * 56:j * 56+112]
ppp = ppp + 1
# print(patch.shape)
outputimg1 = outpathimgno + '/' + filename[:-4] + '/' + filename[:-4] + '_' + str(ppp) + '.png'
cv2.imwrite(outputimg1, patch)
# print(img.shape[0], img.shape[1]) # A = np.array([[1, 2], [3, 4], [5, 6]])
# print(np.sum(A))
print(pp)

getpatch的更多相关文章

  1. Android系统Recovery工作原理之使用update.zip升级过程分析(一)

    通过分析update.zip包在具体Android系统升级的过程,来理解Android系统中Recovery模式服务的工作原理.我们先从update.zip包的制作开始,然后是Android系统的启动 ...

  2. Amazon API Gateway Importer整合过程小结

    (1)需要将swagger json转换成amazon api gateway 所需要的格式(根据Method Request中 Request PathsURL Query String Param ...

  3. 深入了解Libgdx中间Skin分类

    文不是直接翻译.. . 本文在Libgdx的官方wiki的基础上,加上一些自己的理解.所以,难免会一些甚至是非常多的理解非常片面的东西.写的不好,还请见谅.... 事实上 事实上.在LibGDX的官方 ...

  4. recovery 差分升级包制作超时

    我们在对android系统升级的时候,可以减少升级包的大小,只升级差异部分,也就是差分包升级,相关的描述可以参考:http://blog.csdn.net/csdn66_2016/article/de ...

  5. recovery 差分升级包制作超时【转】

    本文转载自:https://blog.csdn.net/csdn66_2016/article/details/73800349 我们在对android系统升级的时候,可以减少升级包的大小,只升级差异 ...

  6. centos 6.4安装杀毒软件clamAV 0.98[转]

    原文出处: http://dnuser.blog.51cto.com/4863891/1303829   1.查看系统版本 [root@local]# lsb_release -a LSB Versi ...

  7. Android系统Recovery工作原理之使用update.zip升级过程分析(一)---update.zip包的制作【转】

    本文转载自:http://blog.csdn.net/mu0206mu/article/details/7399822 这篇及以后的篇幅将通过分析update.zip包在具体Android系统升级的过 ...

随机推荐

  1. 学习postman教程

    postman可以做什么 1.可以做单接口的测试 2.可以调试接口 3.对接口设置变量后,可以做多接口的测试,并输出报告 如何用postman调试接口 1.填写api地址 2.选择请求方式 3.输入a ...

  2. Druid-代码段-3-1

    所属文章:池化技术(一)Druid是如何管理数据库连接的? 本代码段对应主流程3,新增连接的守护线程: //DruidDataSource的内部类,对应主流程3,用来补充连接 public class ...

  3. 图像处理&计算机视觉中upscale,downscale的翻译理解

    最近在看SAN网络(Second-order Attention Network for Single Image Super-Resolution)的论文,其中的Upscale module理解的不 ...

  4. cf 【并查集】

    http://codeforces.com/contest/1245/problem/D 题意就是:你需要让所有城市都有电,你看也在该城市建电站使他有电,同时你可以链接他与其他城市,使之有电 解决: ...

  5. RNN及其变体框架

    RNN及其变体框架  含RNN推导 LSTM理解 理解LSTM网络  算法细节理解及参考文献  

  6. Intellj IDEA 快捷键冲突

    Intellij IDEA快捷键冲突 [问题描述]: ctr + alt + 方向键 与系统的快捷键冲突,按快捷键,屏幕方向发生改变. [解决办法]: ctr + alt + F12 调用出Intel ...

  7. HDL的三种描述方式

    结构化描述 结构化描述方式是最原始的描述方式,是抽象级别最低的描述方式,但同时也是最接近于实际的硬件结构的描述方式.结构化的描述方式,思路就像在面包板上搭建数字电路一样,唯一的不同点就是我们通过HDL ...

  8. Python网络编程基础 struct模块 解决黏包问题 FTP

    struct模块 解决黏包问题 FTP

  9. 【未完成】【oracle】单引号使用问题

    ‘-’不可以用 原因:

  10. Tomcat 设置JVM内存大小

    我的服务器的配置: # OS specific support.  $var _must_ be set to either true or false. JAVA_OPTS="-Xms10 ...