题意

考虑先将所有价值加上,之后用最小割求最小代价。

考虑每个点对\((i,j)\),我们这样建边:

1.源点向每个点i连\(\sum\limits E_{i,j}\)容量的边。

2.每个点向汇点连雇佣代价容量的边。

3.对每个点对\((i,j)\),从\(i\)向\(j\)连\(2*E_{i,j}\)容量的边。

考虑现在要割掉上图有什么割法:

1.割掉两个连向汇点的边,表示都选上了。

2.割掉两个连向源点的边,表示都不选。

3.割掉一条连向源点的,一条连向汇点的,一条连接两点的,表示一个选一个不选,那么我们要减去\(2*E_{i,j}\),因为不仅之前加多了,这么选后还会再减\(E_{i,j}\)。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1010;
const int maxm=10010;
const ll inf=1e9;
int n,cnt=1,st,ed;
int head[maxn],cur[maxn],dep[maxn];
ll ans;
ll cost[maxn],sum[maxn];
ll a[maxn][maxn];
struct edge{int to,nxt;ll flow;}e[maxn*maxn<<1];
inline ll read()
{
char c=getchar();ll res=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
return res*f;
}
inline void add(int u,int v,ll w)
{
e[++cnt].nxt=head[u];
head[u]=cnt;
e[cnt].to=v;
e[cnt].flow=w;
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
for(int i=0;i<=n+1;i++)cur[i]=head[i];
queue<int>q;
q.push(st);dep[st]=1;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(dep[y]||e[i].flow<=0)continue;
dep[y]=dep[x]+1;q.push(y);
}
}
return dep[ed]>0;
}
ll dfs(int x,int goal,ll lim)
{
if(x==goal||lim<=0)return lim;
ll res=lim;
for(int i=cur[x];i;i=e[i].nxt)
{
cur[x]=i;
int y=e[i].to;
if(e[i].flow<=0||dep[y]!=dep[x]+1)continue;
ll tmp=dfs(y,goal,min(res,e[i].flow));
if(tmp<=0)dep[y]=0;
res-=tmp;
e[i].flow-=tmp,e[i^1].flow+=tmp;
if(res<=0)break;
}
return lim-res;
}
inline ll Dinic()
{
ll res=0;
while(bfs())res+=dfs(st,ed,inf);
return res;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)cost[i]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=read(),ans+=a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
sum[i]+=a[i][j];
st=0,ed=n+1;
for(int i=1;i<=n;i++)add(st,i,sum[i]),add(i,st,0);
for(int i=1;i<=n;i++)add(i,ed,cost[i]),add(ed,i,0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j&&a[i][j])add(i,j,2*a[i][j]),add(j,i,0);
printf("%lld",ans-Dinic());
return 0;
}

luoguP1791 [国家集训队]人员雇佣的更多相关文章

  1. P1791-[国家集训队]人员雇佣【最大权闭合图】

    正题 题目链接:https://www.luogu.com.cn/problem/P1791 题目大意 有\(n\)个人,雇佣第\(i\)个需要\(A_i\)的费用,对于\(E_{i,j}\)表示如果 ...

  2. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  3. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  4. 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1511  Solved: 728 Descri ...

  5. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  6. 【BZOJ2039】【2009国家集训队】人员雇佣 [最小割]

    人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description 作为一个富有经营头脑的富翁,小L决 ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  9. [转] ACM中国国家集训队论文集目录(1999-2009)

    国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...

随机推荐

  1. 第6次作业--static关键字、对象

    题目1:编写一个类Computer,类中含有一个求n的阶乘的方法.将该类打包,并在另一包中的Java文件App.java中引入包,在主类中定义Computer类的对象,调用求n的阶乘的方法(n值由参数 ...

  2. day87_11_7微信小程序之登录,支付(获取ip,requests使用),授权

    一.登录接口. 官方文档https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/login.html 在登录接口 ...

  3. 机器学习模型| 监督学习| KNN | 决策树

    分类模型 K近邻 逻辑斯谛回归 决策树 K近邻(KNN) 最简单最初级的分类器,就是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类K近邻(k ...

  4. iOS: 线程中那些常见的锁

    一.介绍 在多线程开发中,锁的使用基本必不可少,主要是为了解决资源共享时出现争夺而导致数据不一致的问题,也就是线程安全问题.锁的种类很多,在实际开发中,需要根据情况选择性的选取使用,毕竟使用锁也是消耗 ...

  5. 简单node服务器demo,麻雀虽小,五脏俱全

    //本服务器要实现的功能如下: //1.静态资源服务器(能读取静态资源) //2.能接收get请求,并能处理参数 //3.能接收post请求,并能处理参数 const http = require(' ...

  6. PHP JWT token实现

      原文链接:https://www.jb51.net/article/146790.htm   机制:   代码如下:   <?php /**  * PHP实现jwt  */ class Jw ...

  7. java高并发系列 - 第3天:有关并行的两个重要定律

    有关为什么要使用并行程序的问题前面已经进行了简单的探讨.总的来说,最重要的应该是处于两个目的. 第一,为了获得更好的性能: 第二,由于业务模型的需要,确实需要多个执行实体. 在这里,我将更加关注第一种 ...

  8. IDEA maven设置配置

    IDEA Maven配置 1. 下载maven 下载地址 从官网上,下载一个压缩包,然后解压到任意的文件夹 Maven的安装必须需要jdk1.7+ 2. 环境变量设置 M2_HOME改为具体的路径,其 ...

  9. 使用ADO.NET实体数据模型

    前景:要操作的数据表必须添加主键(方式:进入数据库-->数据表名-->设计-->列名右键-->设置主键) 可在服务器资源管理器中查看是否设置了主键(主键会有一把钥匙的图样) 1 ...

  10. c# 字符串中全角和半角字符互转

    public class ConvertDBCAndSBC { /// <summary>半角转成全角 /// 半角空格32,全角空格12288 /// 其他字符半角33~126,其他字符 ...