data_generator

每次输出一个batch,基于keras.utils.Sequence

Base object for fitting to a sequence of data, such as a dataset.

Every Sequence must implement the __getitem__ and the __len__ methods. If you want to modify your dataset between epochs you may implement on_epoch_end. The method __getitem__ should return a complete batch.

Notes

Sequence are a safer way to do multiprocessing. This structure guarantees that the network will only train once on each sample per epoch which is not the case with generators.

   Sequence example: https://keras.io/utils/#sequence

#!/usr/bin/env python
# coding: utf-8 from keras.utils import Sequence
import numpy as np
from keras.preprocessing import image
from skimage.io import imread class My_Custom_Generator(Sequence) :
def __init__(self, image_filenames, labels, batch_size) :
self.image_filenames = image_filenames
self.labels = labels
self.batch_size = batch_size
def __len__(self) :
return (np.ceil(len(self.image_filenames) / float(self.batch_size))).astype(np.int) def __getitem__(self, idx) :
batch_y = self.labels[idx * self.batch_size : (idx+1) * self.batch_size]
batch_x = self.image_filenames[idx * self.batch_size : (idx+1) * self.batch_size]
batch_seq = [] #batch_seq
for x in batch_x: #len(x) =16
seq_img = []
for img in x: #len(item) =25
seq_img.append(image.img_to_array(imread(img)))
seq_x = np.array([seq_img])
batch_seq.append(seq_img)
batch_seq_list = np.array(batch_seq)
return batch_seq_list, np.array(batch_y)

两种将数据输出为numpy.array的方法

通过list转为numpy.array

速度快,list转array过程需要注意数据维度变化

''' list
batch_x =X_train_filenames[idx * batch_size : (idx+1) * batch_size]
batch_seq = [] #batch_seq
for x in batch_x: #len(x) =16
seq_img = []
for img in x: #len(item) =25
seq_img.append(image.img_to_array(imread(img)))
seq_x = np.array([seq_img])
batch_seq.append(seq_img)
batch_seq_list = np.array(batch_seq)
'''

利用np.empty

速度慢,开始前确定batch维度即可

'''numpy
batch_x =X_train_filenames[idx * batch_size : (idx+1) * batch_size]
batch_seq = np.empty((0,25,224,224,3),float)
for x in batch_x: #len(x) =16
seq_batch = np.empty((0,224,224,3),float)
for item in x: #len(item) =25
seq_batch = np.append(seq_batch, np.expand_dims(image.img_to_array(imread(item)), axis=0), axis = 0)
batch_seq2 = np.append(batch_seq, np.expand_dims((seq_batch), axis=0), axis = 0)
'''

  

 

keras 学习笔记(二) ——— data_generator的更多相关文章

  1. Keras学习笔记二:保存本地模型和调用本地模型

    使用深度学习模型时当然希望可以保存下训练好的模型,需要的时候直接调用,不再重新训练 一.保存模型到本地 以mnist数据集下的AutoEncoder 去噪为例.添加: file_path=" ...

  2. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  3. WPF的Binding学习笔记(二)

    原文: http://www.cnblogs.com/pasoraku/archive/2012/10/25/2738428.htmlWPF的Binding学习笔记(二) 上次学了点点Binding的 ...

  4. AJax 学习笔记二(onreadystatechange的作用)

    AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...

  5. [Firefly引擎][学习笔记二][已完结]卡牌游戏开发模型的设计

    源地址:http://bbs.9miao.com/thread-44603-1-1.html 在此补充一下Socket的验证机制:socket登陆验证.会采用session会话超时的机制做心跳接口验证 ...

  6. JMX学习笔记(二)-Notification

    Notification通知,也可理解为消息,有通知,必然有发送通知的广播,JMX这里采用了一种订阅的方式,类似于观察者模式,注册一个观察者到广播里,当有通知时,广播通过调用观察者,逐一通知. 这里写 ...

  7. java之jvm学习笔记二(类装载器的体系结构)

    java的class只在需要的时候才内转载入内存,并由java虚拟机的执行引擎来执行,而执行引擎从总的来说主要的执行方式分为四种, 第一种,一次性解释代码,也就是当字节码转载到内存后,每次需要都会重新 ...

  8. Java IO学习笔记二

    Java IO学习笔记二 流的概念 在程序中所有的数据都是以流的方式进行传输或保存的,程序需要数据的时候要使用输入流读取数据,而当程序需要将一些数据保存起来的时候,就要使用输出流完成. 程序中的输入输 ...

  9. 《SQL必知必会》学习笔记二)

    <SQL必知必会>学习笔记(二) 咱们接着上一篇的内容继续.这一篇主要回顾子查询,联合查询,复制表这三类内容. 上一部分基本上都是简单的Select查询,即从单个数据库表中检索数据的单条语 ...

  10. NumPy学习笔记 二

    NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

随机推荐

  1. 7.8 Structured Streaming

    一.Spark流计算组件的演进   二.Structured Streaming的基本原理 Structured Streaming将数据建模成一个结构化的数据表DataFrame,后到达的数据就是一 ...

  2. Leetcode 90. 子集 II

    地址  https://leetcode-cn.com/problems/subsets-ii/ 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重 ...

  3. Please make sure you have the correct access rights and the repository exists.

    参考:https://blog.csdn.net/jingtingfengguo/article/details/51892864,感谢老哥. 从码云克隆项目到新的服务器上,报错: Please ma ...

  4. eclipse3.7以后编译代码提示ambiguous 的解决方法

    Eclispe3.7以后在使用可变函数时可能会遇到这种编译错误的问题 The method is ambiguous 正确的解决方法是:  在eclipse.ini -vmargs后面添加  -Dto ...

  5. Zookeeper分布式锁实战

    场景描述: 在线程高并发场景下,生成唯一的订单编号,如: 2017-10-14-20-52-33-01 年-月-日-时-分-秒-序号 (1)Lock锁接口 package com.zookeeper. ...

  6. ImportError: unable to find Qt5Core.dll on PATH

    一.实验环境 1.Windows7x32_SP1 2.python3.7.4 3.pyinstaller3.5 二.问题描述 1.一直都是在Windows10x64上使用pyinstaller打包ex ...

  7. pyqt5多线程-简单例子

    一.主要代码逻辑 from PyQt5 import QtWidgets, QtCore from testqt.TEST_QT_FROM import Ui_Dialog import sys fr ...

  8. 栈与后缀表达式C实现

    #include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct stack { int t ...

  9. FtpClient上传文件速度非常慢,而且大小为0,上传失败

    问题发生: 环境:VSFTP+FTPClient+Client 使用FTPClient上传文件的时候总是卡住,而且文件大小为0,上传失败, 解决方案: 添加代码:调用FTPClient的enterLo ...

  10. 死磕 java同步系列之ReentrantLock VS synchronized——结果可能跟你想的不一样

    问题 (1)ReentrantLock有哪些优点? (2)ReentrantLock有哪些缺点? (3)ReentrantLock是否可以完全替代synchronized? 简介 synchroniz ...